Knowledge

Keyword: renewable energy

paper

Maritime security and the wind: Exploring threats and risks to renewable energy infrastructures offshore

Christian Bueger, Timothy Edmunds

Offshore wind energy production has seen a significant expansion in the past decade and has become one of the most important maritime activities. However, the implications of offshore wind farm expansion for maritime security have, so far, received sparse attention in the literature. In this article we conduct one of the first thorough analyses of the security of offshore wind farms and related installations, such as underwater electricity cables, energy islands, and hydrogen plants.

Ocean Yearbook / 2024
Go to paper
paper

High-fidelity modelling of moored marine structures: multi-component simulations and fluid-mooring coupling

Claes Eskilsson & Johannes Palm

High-fidelity viscous computational fluid dynamics (CFD) models coupled to dynamic mooring models is becoming an established tool for marine wave-body-mooring (WBM) interaction problems. The CFD and the mooring solvers most often communicate by exchanging positions and mooring forces at the mooring fairleads. Mooring components such as submerged buoys and clump weights are usually not resolved in the CFD model, but are treated as Morison-type bodies. This paper presents two recent developments in high-fidelity WBM modelling: (i) a one-way fluid-mooring coupling that samples the CFD fluid kinematics to approximate drag and inertia forces in the mooring model; and (ii) support for inter-moored multibody simulations that can resolve fluid dynamics on a mooring component level. The developments are made in the high-order discontinuous Galerkin mooring solver MoodyCore, and in the two-phase incompressible Navier–Stokes finite volume solver OpenFOAM. The fluid-mooring coupling is verified with experimental tests of a mooring cable in steady current. It is also used to model the response of the slack-moored DeepCwind FOWT exposed to regular waves. Minor effects of fluid-mooring coupling were noted, as expected since this a mild wave case. The inter-mooring development is demonstrated on a point-absorbing WEC moored with a hybrid mooring system, fully resolved in CFD-MoodyCore. The WEC (including a quasi-linear PTO) and the submerged buoys are resolved in CFD, while the mooring dynamics include inter-mooring effects and the one-way sampling of the flow. The combined wave-body-mooring model is judged to be very complete and to cover most of the relevant effects for marine WBM problems.

Journal of Ocean Engineering and Marine Energy / 2022
Go to paper
paper

High-Fidelity Hydrodynamic Simulations of a Slack-Moored Floating Offshore Wind Turbine Platform

Claes Eskilsson, Gael Verao Fernandez, Jacob Andersen & Johannes Palm

We numerically simulate the hydrodynamic response of a floating offshore wind turbine (FOWT) using computational fluid dynamics. The FOWT under consideration is a slack-moored 1:70 scale model of the UMaine VolturnUS-S semi-submersible platform. The test cases under consideration are (i) static equilibrium load cases, (ii) free decay tests, and (iii) two focused wave cases of different wave steepness. The FOWT is modeled using a two-phase Navier-Stokes solver inside the OpenFOAM-v2006 framework. The catenary mooring is computed by dynamically solving the equations of motion for an elastic cable using the MoodyCore solver. The results are shown to be in good agreement with measurements.

International Journal of Offshore and Polar Engineering / 2024
Go to paper
paper

Hydrodynamic Simulations of a FOWT Platform (1st FOWT Comparative Study) Using OpenFOAM Coupled to MoodyCore

Claes Eskilsson, Gael Verao Fernandez, Jacob Andersen & Johannes Palm

We numerically simulate the hydrodynamic response of a floating offshore wind turbine (FOWT) using CFD. The FOWT under consideration is a slack-moored 1:70 scale model of the UMaine VolturnUS-S semisubmersible platform. This set-up has been experimentally tested in the COAST Laboratory Ocean Basin at the University of Plymouth, UK. The test cases under consideration are (i) static equilibrium load cases, (ii) free decay tests and (iii) two focused wave cases with different wave steepness. The FOWT is modeled using a two-phase Navier-Stokes solver inside the OpenFOAM-v2006 framework. The catenary mooring is computed by dynamically solving the equations of motion for an elastic cable using the MoodyCore solver. The results of the static and decay tests are compared to the experimental values ​​with only minor differences in motions and mooring forces. The focused wave cases are also shown to be in good agreement with measurements. The use of a one-way fluid-mooring coupling results in slightly higher mooring forces, but does not influence the motion response of the FOWT significantly.

International Society of Offshore & Polar Engineers / 2023
Go to paper
paper

On numerical uncertainty of VOF-RANS simulations of wave energy converters through V&V technique

Claes Gunnar Eskilsson, Johannes Palm & Lars Bergdahl

Computational fluid dynamics (CFD) is becoming an increasingly popular tool in the wave energy sector, and over the last five years we have seen many studies using CFD. While the focus of the CFD studies have been on the validation phase, comparing numerically obtained results against experimental tests, the uncertainties associated with the numerical solution has so far been more or less overlooked. There is a need to increase the reliability of the numerical solutions in order to perform simulation based optimization at early stages of development. In this paper we introduce a well-established verification and validation (V&V) technique. We focus on the solution verification stage and how to estimate spatial discretization errors for simulations where no exact solutions are available. The technique is applied to the cases of a 2D heaving box and a 3D moored cylinder. The uncertainties are typically acceptable with a few percent for the 2D box, while the 3D cylinder case show double digit uncertainties. The uncertainties are discussed with regard to physical features of the flow and numerical techniques.

Technical Committee of the European Wave and Tidal Energy Conference / 2017
Go to paper
paper

A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport

Claudio Alexis Rodríguez Castillo*, Baran Yeter, Shen Li, Feargal Brennan, Maurizio Collu

The climate emergency has prompted rapid and intensive research into sustainable, reliable, and affordable energy alternatives. Offshore wind has developed and exceeded all expectations over the last 2 decades and is now a central pillar of the UK and other international strategies to decarbonise energy systems. As the dependence on variable renewable energy resources increases, so does the importance of the necessity to develop energy storage and nonelectric energy vectors to ensure a resilient whole-energy system, also enabling difficult-to-decarbonise applications, e.g. heavy industry, heat, and certain areas of transport. Offshore wind and marine renewables have enormous potential that can never be completely utilised by the electricity system, and so green hydrogen has become a topic of increasing interest. Although numerous offshore and marine technologies are possible, the most appropriate combinations of power generation, materials and supporting structures, electrolysers, and support infrastructure and equipment depend on a wide range of factors, including the potential to maximise the use of local resources. This paper presents a critical review of contemporary offshore engineering tools and methodologies developed over many years for upstream oil and gas (O&G), maritime, and more recently offshore wind and renewable energy applications and examines how these along with recent developments in modelling and digitalisation might provide a platform to optimise green hydrogen offshore infrastructure. The key drivers and characteristics of future offshore green hydrogen systems are considered, and a SWOT (strength, weakness, opportunity, and threat) analysis is provided to aid the discussion of the challenges and opportunities for the offshore green hydrogen production sector.

Wind Energy Science / 2024
Go to paper
paper

Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems

Dawid Jozwiak, Jayakrishnan Radhakrishna Pillai, Pavani Ponnaganti, Birgitte Bak-Jensen & Jan Jantzen

Implementation of alternative energy supply solutions requires the broad involvement of local communities. Hence, smart energy solutions are primarily investigated on a local scale, resulting in integrated community energy systems (ICESs). Within this framework, the distributed generation can be optimally utilised, matching it with the local load via storage and demand response techniques. In this study, the boat demand flexibility in the Ballen marina on Samsø—a medium-sized Danish island—is analysed for improving the local grid operation. For this purpose, suitable electricity tariffs for the marina and sailors are developed based on the conducted demand analysis. The optimal scheduling of boats and battery energy storage system (BESS) is proposed, utilising mixed-integer linear programming. The marina’s grid-flexible operation is studied for three representative weeks—peak tourist season, late summer, and late autumn period—with the combinations of high/low load and photovoltaic (PV) generation. Several benefits of boat demand response have been identified, including cost savings for both the marina and sailors, along with a substantial increase in load factor. Furthermore, the proposed algorithm increases battery utilisation during summer, improving the marina’s cost efficiency. The cooperation of boat flexibility and BESS leads to improved grid operation of the marina, with profits for both involved parties. In the future, the marina’s demand flexibility could become an essential element of the local energy system, considering the possible increase in renewable generation capacity—in the form of PV units, wind turbines or wave energy

Energies / 2021
Go to paper
paper

Smart Island Energy Systems: Case Study of Ballen Marina on Samsø

Dawid Jozwiak, Jayakrishnan Radhakrishna Pillai, Pavani Ponnaganti, Birgitte Bak-Jensen & Jan Jantzen

Integrated community energy systems are an emerging concept for increasing the self-sufficiency and efficiency of local multi-energy systems. This idea can be conceptualized for the smart island energy systems due to their geographical and socioeconomic context, providing several benefits through this transformation. In this study, the energy system of the Ballen marina—located on the medium-sized Danish island of Samsø— is investigated. Particular consideration is given to the integration of PV, BESS, and—in the future—flexible loads. For this purpose, the BESS is modelled, incorporating the battery degradation process. The possibilities to improve energy utilization and maximize self-consumption from the marina's PV units are identified and evaluated, demonstrating a substantial enhancement of the local system operation.

IEEE (Institute of Electrical and Electronics Engineers) / 2021
Go to paper
paper

The hidden costs of multi-use at sea

E. Ciravegna, L. van Hoof, C. Frier, F. Maes, H. B. Rasmussen, A. Soete, S. W.K. van den Burg

As ocean space increasingly is used for production purposes, such as for the production of food and feed, renewable energy and resource mining, competition for space becomes a concern. A spatial solution to this is to co-locate activities in a multi-use setting. Next to the direct (financial) costs and benefits of multi-use and the societal cost and benefits, there are other factors, in the realm of legal aspects, insurance, health and safety issues and the overall governance of multi-use, that determine whether multi-use can be implemented successfully. This includes transaction costs that arise when for example non-adequate regulation, governance and insurance schemes are in place. Based on the analysis of five case studies across Europe these combined/collective transaction costs of multi-use are analysed and suggestions how to reduce and/or overcome these transaction costs are presented.

Marine Policy / 2024
Go to paper
paper

Ocean energy systems wave energy modeling task: Modelling, verification and validation of wave energy converters

Fabian Wendt, Kim Nielsen, Yi Hsiang Yu, Harry Bingham, Claes Eskilsson , Morten Kramer , Aurélien Babarit, Tim Bunnik, Ronan Costello, Sarah Crowley, Benjamin Gendron, Giuseppe Giorgi, Simone Giorgi, Samuel Girardin, Deborah Greaves, Pilar Heras, Johan Hoffman, Hafizul Islam, Ken Robert Jakobsen, Carl Erik JansonJohan Jansson, Hyun Yul Kim, Jeong Seok Kim, Kyong Hwan Kim, Adi Kurniawan, Massimiliano Leoni, Thomas Mathai, Bo Woo Nam, Sewan Park, Krishnakumar Rajagopalan, Edward Ransley, Robert Read, John V. Ringwood, José Miguel Rodrigues, Benjamin Rosenthal, André Roy, Kelley Ruehl, Paul Schofield, Wanan Sheng, Abolfazl Shiri, Sarah Thomas, Imanol Touzon & Imai Yasutaka

The International Energy Agency Technology Collaboration Program for Ocean Energy Systems (OES) initiated the OES Wave Energy Conversion Modeling Task, which focused on the verification and validation of numerical models for simulating wave energy converters (WECs). The long-term goal is to assess the accuracy of and establish confidence in the use of numerical models used in design as well as power performance assessment of WECs. To establish this confidence, the authors used different existing computational modeling tools to simulate given tasks to identify uncertainties related to simulation methodologies: (i) linear potential flow methods; (ii) weakly nonlinear Froude–Krylov methods; and (iii) fully nonlinear methods (fully nonlinear potential flow and Navier–Stokes models). This article summarizes the code-to-code task and code-to-experiment task that have been performed so far in this project, with a focus on investigating the impact of different levels of nonlinearities in the numerical models. Two different WECs were studied and simulated. The first was a heaving semi-submerged sphere, where free-decay tests and both regular and irregular wave cases were investigated in a code-to-code comparison. The second case was a heaving float corresponding to a physical model tested in a wave tank. We considered radiation, diffraction, and regular wave cases and compared quantities, such as the WEC motion, power output and hydrodynamic loading.

Journal of Marine Science and Engineering / 2019
Go to paper