The climate emergency has prompted rapid and intensive research into sustainable, reliable, and affordable energy alternatives. Offshore wind has developed and exceeded all expectations over the last 2 decades and is now a central pillar of the UK and other international strategies to decarbonise energy systems. As the dependence on variable renewable energy resources increases, so does the importance of the necessity to develop energy storage and nonelectric energy vectors to ensure a resilient whole-energy system, also enabling difficult-to-decarbonise applications, e.g. heavy industry, heat, and certain areas of transport. Offshore wind and marine renewables have enormous potential that can never be completely utilised by the electricity system, and so green hydrogen has become a topic of increasing interest. Although numerous offshore and marine technologies are possible, the most appropriate combinations of power generation, materials and supporting structures, electrolysers, and support infrastructure and equipment depend on a wide range of factors, including the potential to maximise the use of local resources. This paper presents a critical review of contemporary offshore engineering tools and methodologies developed over many years for upstream oil and gas (O&G), maritime, and more recently offshore wind and renewable energy applications and examines how these along with recent developments in modelling and digitalisation might provide a platform to optimise green hydrogen offshore infrastructure. The key drivers and characteristics of future offshore green hydrogen systems are considered, and a SWOT (strength, weakness, opportunity, and threat) analysis is provided to aid the discussion of the challenges and opportunities for the offshore green hydrogen production sector.
Offshore wind energy production has seen a significant expansion in recent years. With technologies rapidly improving and prices dropping, it is now one of the key instruments in the green energy transition. The implications of offshore wind farm expansion for maritime security and ocean governance have, so far, received sparse attention in the literature. This article offers one of the first thorough analyses of the security of offshore wind farms and related installations, such as underwater electricity cables, energy islands, and hydrogen plants. The technical vulnerabilities of wind farm systems is reviewed and threats from terrorism, crime and State hostilities, including physical and cyber risk scenarios, are discussed. The expansion of green offshore energy production must keep pace with the changing threat landscape that follows from it. Prospective solutions for the protection of wind farms systems, including surveillance, patrols and self-protection are discussed. The current repertoire of maritime security solutions is in many ways capable of dealing with the threats and risks effectively if adjusted accordingly. The analysis builds important new bridges between debates in energy security and maritime security, as well as the implications of climate change adaption and mitigation for security at sea.
Rumor has it that all technologies needed to build energy islands are ready. Wind turbines are spinning in many large offshore parks, while combinations of sand and concrete have given birth to several entirely new islands. However, not all rumors are true. Not only has the Danish parliament mandated the largest ever infrastructure project in the history of our country. The first Danish artificial island built for energy production will also become the world’s largest renewable energy project. On top of the technical and logistical challenges associated with building something of an unprecedented scale and nature come new concerns. The energy islands are an extreme version of the power system we know today, and therefore represent a Mars mission for the energy system. More than once have large infrastructure projects been plagued by delays and significant additional costs. Often such problems have been rooted in overly optimistic planning, limited knowledge regarding the complexity and interdependencies involved, and not giving enough attention to the development phase relative to the construction phase. For many reasons, it is highly desirable for the energy island projects to perform well. Therefore, we have teamed up to map the key challenges and suggest R&D initiatives to address them. Importantly, these initiatives are not intended as an inserted step before construction. Given the urgency in green transition and ending the reliance on fossil fuels, research and construction must be conducted in parallel. A solid foundation for energy islands On the following pages we invite you to delve into the complexity of constructing and operating offshore hubs for renewable energy. As you will hopefully agree, we are by no means saying that it cannot be done. It can. But only if decisions are based on a solid foundation of knowledge.
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050, we find that offshore hydrogen generation may likely only play a limited role, and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions, which result in deep decarbonisatiton of the energy system towards 2050, hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage, this is the most cost-effective solution to satisfy future hydrogen demand. Overall, we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system, but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
The management of produced water (PW) discharges from offshore oil and gas installations in the North Atlantic is under the auspices of OSPAR (Oslo/Paris convention for Protection of the Marine Environment of the North-East Atlantic). In 2010, OSPAR introduced the Risk Based Approach (RBA) for PW management. The RBA includes a hazard assessment estimating PW ecotoxicity using two approaches: Whole Effluent Testing (WET) and Substance Based (SB). Set against the framework of the WET and SB approach, this study conducted a literature review on the magnitude and cause of PW ecotoxicity, respectively, and on the challenges of estimating these. A large variability in the reported magnitude of PW WET was found, with (E/L)C50-values ranging from 100% and a median of 11% (n=301). Metals, hydrocarbons, and production chemicals were identified as causing ecotoxicity across literature. However, this review reveals how knowledge gaps on PW composition and high sample- and species-dependency of PW ecotoxicity makes clear identification and generalization difficult. It also highlights how limitations regarding availability and reliability of ecotoxicity data result in large uncertainties in the subsequent risk estimates, which is not adequately reflected in the RBA output (e.g. environmental impact factors). Thus, it is recommended to increase the focus on improving ecotoxicity data quality before further use in the RBA, and that WET should play a more pronounced role in the testing strategy. To increase the reliability of the SB approach, more attention should be given to the actual composition of PW. Bioassay-directed chemical analysis, combining outcomes of WET and SB in toxicity identification evaluations, may hold the key to identifying drivers of ecotoxicity in PW. Finally, an uncertainty appraisal must be an integrated part of all reporting of risk estimates in the RBA, to avoid mitigation actions based on uncertainties rather than reliable ecotoxicity estimations.
Taking concrete steps towards a carbon-free society, the Danish Parliament has recently approved the establishment of the world's first two offshore energy hubs on Bornholm and on an artificial island in the North Sea. Being the two first-of-their-kind projects, several aspects related to the inclusion of these “energy islands” in the current market setup are still under discussion. To this end, this paper presents a first large-scale impact analysis of offshore hubs on the whole European power system and electricity market. Our study shows that energy hubs in the North Sea contribute to increase social welfare in Europe. However, when considering the impact on each country, benefits are not shared equally. To help the development of such projects, we focus on the identification of the challenges arising from the hubs. From a market perspective, we show how exporting countries are affected by the lower electricity prices and we point at heterogeneous consequences induced by new transmission capacity installed in the North Sea. From a system point of view, we show how the large amount of wind energy stresses conventional generators, which are required to become more flexible, and national grids, which cannot always accommodate large imports from the hubs.
Offshore energy hubs connect large amounts of offshore wind to a hub from where the generation can be transmitted to onshore, potentially linking to multiple surrounding countries. The benefits of such hubs, and the related meshed offshore grid to connect them, have been investigated in the North Sea. The system-wide impacts of offshore energy hubs in the Baltic Sea are less studied; however, the region is seeing increased interest in offshore wind development. This paper uses detailed offshore wind generation simulations and energy system optimisation to investigate the cost-effectiveness of offshore energy hubs in the Baltic Sea in different scenarios towards 2050. The results show that the largest deployment of offshore energy hubs occurs when the energy system is highly electrified. The strongest development of the offshore energy hubs occurs in the southern part of the Baltic Sea.
Offshore grids can play key roles in the transition of energy systems toward sustainability. Although they require extensive infrastructure investments, they allow for the exploitation of additional resources and may be important in providing for part of the increasing electricity demands driven by sector coupling. This paper quantifies the socioeconomic value of offshore grids and identifies their major drivers, performing energy system optimization in a model application of the northern–central European energy system and the North Sea offshore grid towards 2050. The increasing wake loss with the sizes of hub-connected wind farms is integrated in the modeling. We find that without sector coupling no offshore grid may develop, and that the higher the level of sector coupling, the higher the value of offshore grids. Therefore, it can be strongly stated that offshore grid infrastructure development should not be discussed as a separate political topic, but seen in connection to sector coupling.
Offshore jacket foundations for wind turbine generators are in risk of metal fatigue at the weldedjoints due to the highly dynamic wind and wave loading. The complex multiaxial stresses occurringat the welded joints can be nonproportional and lead to increased fatigue damage as compared toproportional stresses. Furthermore, several random effects influence the response of the offshorestructures and the fatigue lives of the welded joints.
In this thesis, the fatigue response of welded joints in offshore jacket structures is assessed. The influence of nonproportional stress states on the fatigue life has been examined using experimental fatigue data from literature by modelling the published experiments using the finite element method (FEM) and assessing the stress states using the notch stress approach. The results show that a nonzero phaseshift between the governing normal and shear stress at the weld toe leads to increased damages at the weld. An approach for determining the nonproportionality penalty factors for obtaining correct fatigue life estimations has been proposed.
To quantify the level of nonproportionality in the stress states at welds a new quantification approach has been developed based on the principal component analysis (PCA). The approach is easy to implement and simple to interpret, which is often difficult for many of the already published methods. The PCAbased approach is furthermore extended to be used with variable amplitude stress states. By implementing the developed quantification approaches in the fatigue life calculation framework, it is possible to determine if nonproportionality occurs and to account for this in the fatigue life estimation automatically using the estimated penalty factors.
The stochastic finite element method (SFEM) has been used to implement approaches for considering the spatial variability occurring in the jacket structures and welds. Closedform solutions to the stochastic stiffness and stress stiffness matrices have been proposed, making it possible to easily implement the spatial variability of the bending rigidity and other parameters in beam FE models. The matrices have been developed for both classical EulerBernoulli and Timoshenko beam theory and are based on the KarhunenLoéve (KL) expansion for random field discretization. The KL expansion is then further used to formulate a stochastic size effect that takes into account that longer welds tend to fail earlier than shorter welds when considering fatigue. Other approaches for taking into account the size effect are often based on statistical evaluation of fatigue experiments which is used to determine a deterministic calibration factor. The stochastic size effect makes it possible to simulate the randomness in a full weld independently of the highest stressed zones. Using this method, the quality of the welding can be simulated and used to predict more accurate fatigue lives.
In order to design more fatigue resistant welded joints in offshore jacket structures, automatic optimization of the welded joints is required. Already published approaches to do so, often focus on only a few simple fatigue criteria. For an optimization framework to be efficient it has to take into account the complex multiaxial nonproportional fatigue and the stochastic effects of the welds. In the thesis, an optimization framework for fatigue life estimation using the developed PCAbased quantifier and the stochastic size effect has been developed. The framework is easy to use and based on simple formulations, making it possible to implement many types of fatigue criteria without having to reformulate the optimization procedure. The framework has been used to optimize the weld locations in a cast steel jacket insert and shows that considerable mass savings can be achieved by automatic
optimization.
This report provides an assessment on the prospects for offshore energy hubs. Four use cases have been developed and evaluated by respondents in a survey instrument for their forecasted time horizon to implementation and their business potential as opportunities for the maritime and offshore
industries. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.