The importance of reliable battery energy storage systems (BESS) is key to the sustainability of many applications such as renewable power, smart grids, and electric vehicles (EVs). Due to decreasing cost and maturing technology, the Li-ion batteries are now widely used for grid-level storage, grid support for improved power quality, integration with photovoltaic systems, and EV applications. A Li-ion battery pack typically comprises Li-ion cells connected in a suitable combination of series and parallel structure. A battery management system (BMS) is required for charging and discharging, monitoring the current and voltage of each cell or string, battery protection, and temperature control. The system's reliability depends on the BESS reliability and is affected by many factors, including temperature, C-rate, DOD. This research aims to improve BESS reliability by using accurate lifetime modelling for various BMS and converter topologies to identify real-time BESS health and ensure reliability through a suitable control strategy. In particular, the reliability of the BESS for centralized, modularised, distributed, and decentralized topology will be explored along with its cost-reliability trade-off. I will focus on control strategies for optimizing BESS reliability for different applications.
The climate emergency has prompted rapid and intensive research into sustainable, reliable, and affordable energy alternatives. Offshore wind has developed and exceeded all expectations over the last 2 decades and is now a central pillar of the UK and other international strategies to decarbonise energy systems. As the dependence on variable renewable energy resources increases, so does the importance of the necessity to develop energy storage and nonelectric energy vectors to ensure a resilient whole-energy system, also enabling difficult-to-decarbonise applications, e.g. heavy industry, heat, and certain areas of transport. Offshore wind and marine renewables have enormous potential that can never be completely utilised by the electricity system, and so green hydrogen has become a topic of increasing interest. Although numerous offshore and marine technologies are possible, the most appropriate combinations of power generation, materials and supporting structures, electrolysers, and support infrastructure and equipment depend on a wide range of factors, including the potential to maximise the use of local resources. This paper presents a critical review of contemporary offshore engineering tools and methodologies developed over many years for upstream oil and gas (O&G), maritime, and more recently offshore wind and renewable energy applications and examines how these along with recent developments in modelling and digitalisation might provide a platform to optimise green hydrogen offshore infrastructure. The key drivers and characteristics of future offshore green hydrogen systems are considered, and a SWOT (strength, weakness, opportunity, and threat) analysis is provided to aid the discussion of the challenges and opportunities for the offshore green hydrogen production sector.
The hybrid combination of hydrogen fuel cells (FCs) and batteries has emerged as a promising solution for efficient and eco-friendly power supply in maritime applications. Yet, ensuring high-quality and cost-effective energy supply presents challenges. Addressing these goals requires effective coordination among multiple FC stacks, batteries, and cold-ironing. Although there has been previous work focusing it, the unique maritime load characteristics, variable cruise plans, and diverse fuel cell system architectures introduce additional complexities and therefore worth to be further studied. Motivated by it, a two-layer energy management system (EMS) is presented in this paper to enhance shipping fuel efficiency. The first layer of the EMS, executed offline, optimizes day-ahead power generation plans based on the vessel's next-day cruises. To further enhance the EMS's effectiveness in dynamic real-time situations, the second layer, conducted online, dynamically adjusts power splitting decisions based on the output from the first layer and instantaneous load information. This dual-layer approach optimally exploits the maritime environment and the fuel cell features. The presented method provides valuable utility in the development of control strategies for hybrid powertrains, thereby enabling the optimization of power generation plans and dynamic adjustment of power splitting decisions in response to load variations. Through comprehensive case studies, the effectiveness of the proposed EMS is evaluated, thereby showcasing its ability to improve system performance, enhance fuel efficiency (potential fuel savings of up to 28%), and support sustainable maritime operations.
The cold ironing system is gaining interest as a promising approach to reduce emissions from ship transportation at ports, enabling further reductions with clean energy sources coordination. While cold ironing has predominantly been applied to long-staying vessels like cruise ships and containers, feasibility studies for short-berthing ships such as ferries are limited. However, the growing demand for short-distance logistics and passenger transfers highlights the need to tackle emissions issues from ferry transportation. Incorporating electrification technology together with integrated energy management systems can significantly reduce emissions from ferry operations. Accordingly, this paper proposes a cooperative cold ironing system integrated with clean energy sources for ferry terminals. A two-stage energy management strategy combining sizing and scheduling optimization is employed to reduce the port's emissions while minimizing system and operational costs. The proposed system configuration, determined through the sizing method, yields the lowest net present cost of $9.04 M. The applied energy management strategy managed to reduce operational costs by up to 63.402 %, while significantly decreasing emissions from both shipside and shoreside operations. From the shipside, emissions reductions of 38.44 % for CO2, 97.7 % for NOX, 96.69 % for SO2, and 92.1 % for PM were achieved. From the shoreside, the approach led to a 28 % reduction across all emission types. Thus, implementing cold ironing powered by clean energy sources is a viable solution for reducing emissions generated by ferry operations. The proposed energy management approach enables emissions reduction and delivering cost-effectiveness at ferry terminals.
Existing energy management strategies (EMSs) for hybrid power systems (HPSs) in hydrogen fuel cell vessels (FCVs) are not applicable to scenarios with multiple hydrogen fuel cells (FCs) and lithium batteries (LBs) in parallel, and are difficult to achieve real-time control and optimization for multiple objectives. In this paper, a bi-layer real-time energy management strategy (BLRT-EMS) is proposed. Compared with existing EMSs, the proposed BLRT-EMS implements different control/optimization objectives distributed in the execution layer EMS (EL-EMS) and the decision layer EMS (DL-EMS), which can significantly reduce bus voltage fluctuations, decrease hydrogen consumptions, improve the system efficiency, and have potential for engineering applications. In the first EL-EMS, a decentralized optimal power allocation strategy is proposed, which allows each FC system to allocate the output power ratio according to their generation costs, ensuring consistent performance of multiple FC systems (MFCS) under long-term operating conditions, and thus delaying the degradation rate of FCs. In the second EL-EMS, a distributed cooperative control strategy is proposed to achieve dynamic SoC equalization, proportional output power allocation, and accurate bus voltage restoration among multiple battery storage systems (MBSS) to extend the service life of batteries. In the DL-EMS, an energy coordination optimization strategy between MFCS and MBSS is proposed to achieve hydrogen consumption reduction and system efficiency improvement, thus enhancing the endurance performance of FCV. Finally, test results based on the StarSim experimental platform show that the proposed BLRT-EMS has faster SoC convergence speed, smaller bus voltage deviation, lower hydrogen consumption, higher system efficiency, and lower operation stress than the state-of-the-art methods.
Under complex sea conditions, the energy demand for each device of renewable-energy ships presents a random situation, which makes the complex energy demand of the ship integrated energy system (SIES) uncertain during ship navigation. To ensure the economical, stable, and efficient operation of the SIES, this paper proposes a distributed stochastic energy management method to solve the energy management problem (EMP). Firstly, a framework for the SIES including both renewable energy and traditional energy is constructed. Based on the energy efficiency operation index (EEOI) and the operation mode of energy supply devices during navigation, the EMP of the SIES is raised. Then, considering the distributed structure and limited computing resources of the SIES, a distributed stochastic energy management method is proposed. Through this method, the disturbances of load demand can be effectively suppressed, and a stable energy supply is provided for devices such as power propellers. Furthermore, it is analyzed that the proposed method can converge to the O(η) (η is the fixed step size of the proposed method) neighborhood of the optimal energy management decision in the mean-square-error sense. Finally, the simulation results verify that the mean-square-error-optimal energy management decision of the SIES can be obtained by the proposed method in different scenarios, and the proposed method can solve the EMP of SIES under complex sea conditions.
The emissions of the maritime sector caused by ship transportation and other fossil fuel sources pose a threat to the environment and human health. It drives an increasing interest in adopting electrification solutions to revolutionize the conventional maritime energy-intensive and highly polluting industry. Accordingly, this thesis is one of the pioneering attempts to implement a seaport microgrid and carbon capture shore power system of cold ironing at a port dedicated to sustainability while remaining competitive.
However, the technological and research gaps of the conventional port scheduling paradigm constitute challenges in a synergy between the two prominent maritime electrification systems of seaport microgrids and cold ironing. The incorporation of cold ironing into seaport operations introduces new challenges to handling workflow and the potential impact of such integration has not yet been quantitatively addressed. Developing strategic management to improve port performance is always an issue for the port operators. This research gap motivated this study to develop an integrated operation and energy management framework by executing forecasting and optimization techniques for coordinating these technologies toward the emission neutrality goal.
This thesis begins with an extensive review of the significant aspects of cold ironing technology and seaport microgrids. A range of factors associated with the varying demand for cold ironing in seaport microgrids, requiring advanced forecasting techniques, are described in Chapter 2. Another challenge is that the integration of cold ironing with limited capacities increases the complexity of the existing seaside operation at port namely the berth allocation problem (BAP) and quay crane allocation problem (QCAP). It prolongs the waiting time for the ships to be served at berth. Thus, a seaside operational optimization model is developed in Chapter 3 to cooperatively schedule BAP, QCAP, and cold ironing assignment problems (CIAP). Chapter 4 integrates bilevel optimization as an energy management system (EMS) framework to coordinate the joint cold ironing with the seaport microgrid concept, providing more flexibility in energy scheduling while remaining cost-effective. Finally, Chapter 5 presents the overall conclusions of the thesis, research contribution, and future recommendations.
Shore power is an important green technology used by ports to reduce carbon emissions. This paper investigates how to design subsidy strategy for promoting the installation and utilization of shore power. However, while installation subsidies may promote the installation of SPI in ports, resulting in a reduction in ship emissions, utilization subsidies may attract more ship visits, which may increase the total emissions of a port. Therefore, subsidies for shore power utilization and installation should be optimized to minimize the cost to government (comprising the environmental costs of ship emissions, the cost of utilization or installation subsidies, and carbon taxes) and maximize the profit for ports (including profit from original and new ships, utilization and installation subsidies, and carbon taxes). Using the Stackelberg game methodology, we discuss five cases to give a comprehensive analysis of the design of different subsidy policies, including no subsidy, SPI-utilization subsidy undertaken by port, SPI-utilization subsidy undertaken by port and government, carbon emission tax policy considering SPI-utilization subsidy, and SPI-utilization and SPI-installation subsidies undertaken by port and government. Managerial insights are generated according to the theoretical analysis and numerical experiments results, which can give references to the government and port operators.
Wind propulsion systems (WPS) for commercial ships can be a key ingredient to achieving the IMO green targets. Most WPS installations will operate in conjunction with propellers and marine engines in a hybrid mode, which will affect their performance. The present paper presents the development of a generic, fast, and easy tool to predict the propeller and engine performance variation, along with the cost, as a function of the wind power installed in two operation conditions: fixed ship speed and constant shaft speed. Specific focus is directed toward showing generic trends and trade-offs that inform economic decision-making. To this end, a key feature of the presented work is the ability to assess the cost–benefit of both controllable pitch propellers and fixed pitch propellers (CPPs and FPPs). This provides advice on when, in terms of WPS installation size, it is worthwhile to install which kind of propeller. CPPs are found to be more suitable for newly built wind-powered ships (>70% wind power), while a conventional FPP is satisfactory for wind-assisted ships (<70% wind power) and retrofitted installations. The results for a 91,373 GT bulk carrier showed that a WPS unloads the propeller and the engine, which leads to an increase in the propulsive efficiency and a detrimental rise of the engine specific fuel oil consumption. However, propeller gains are found to be greater than engine losses, which result in extra savings. Thus, not only does a WPS save fuel and corresponding pollutant emissions, but it also increases the entire propulsive efficiency.
Offshore wind energy production has seen a significant expansion in the past decade and has become one of the most important maritime activities. However, the implications of offshore wind farm expansion for maritime security have, so far, received sparse attention in the literature. In this article we conduct one of the first thorough analyses of the security of offshore wind farms and related installations, such as underwater electricity cables, energy islands, and hydrogen plants.