A multidisciplinary and -national team of Ghanaian and Danish researchers engage in a three year research project financed by the Danish Ministry of Foreign Affairs in order to address the question how communication, gender, and sustainability affect the cluster performance of the Port of Tema in Ghana. We approach the question from different angles ranging from quantitative survey datat to longitudinal anthropological observations and qualitative multilayered interviews with port workers, politicians, port officials, domestic and foreign investors, and representatives from the surrounding communities.
A recently signed memorandum of understanding (MoU) between Ethiopia and Somaliland to develop the Port of Berbera and establish a naval base has sparked tensions and fears of conflict with Somalia. The MoU grants Ethiopia commercial access to Somaliland ports and a 20-kilometer lease for a naval base in exchange for Ethiopia's recognition of Somaliland's independence, drawing strong criticism from Somalia, which considers Somaliland part of its territory.
The article, ‘Logistics, Politics and Berbera in the Eye of an International Storm’ examines how the pursuit of economic development through logistics infrastructure can exacerbate political tensions and reignite historical conflicts. The Berbera corridor, envisioned as a pathway to peace, stability, and prosperity through economic interdependence, now underscores the potential for violent conflict inherent in modern logistics and infrastructure development. The case furthermore brings out the complex interplay of local, regional, and international interests at play in the Horn of Africa. Thus, the port's upgrade, intended to attract foreign investment and transform the area into a major trade hub, has intensified competition among Somaliland's clan lineages, inflamed historical tensions between Somalia and Ethiopia, and challenged the security and logistic interests of regional and global powers in the Red Sea and Western Indian Ocean.
The article is part of a special issue of Politique Africaine about the current armed conflicts in the Horn of Africa.
Since the outbreak of COVID-19, its impacts on the maritime transportation and logistics field have been multi-dimensional. In addition to the green shipping corridor proposed by the Clydebank Declaration in the United Kingdom in 2021, port digitalisation and decarbonisation of the maritime industry have become focal issues in the field. The industry needs a new framework to offset the negative impacts of the pandemic and to accommodate integrated technologies comprising of artificial intelligence (AI), blockchain, cloud systems, internet of things (IoT) and others, which have been applied to the industry. Having considered these circumstances, this paper aims to propose the 6th-generation ports model with smart port (6GP) as a new framework for the port logistics industry in the post-COVID-19 period. The proposed 6GP contributes to providing business development strategy and port development policy for stakeholders in the industry in the post-pandemic era reflecting focal challenges such as digitalisation, decarbonisation, sustainability and smart transformation. It also contributes to expanding port devolution theory from the fifth-generation ports (5GP) to 6GP.
Background: Autonomous ships have the potential to increase operational efficiency and reduce carbon footprints through technology and innovation. However, there is no comprehensive literature review of all the different types of papers related to autonomous ships, especially with regard to their integration with ports. This paper takes a systematic review approach to extract and summarize the main topics related to autonomous ships in the fields of container shipping and port management. Methods: A machine learning method is used to extract the main topics from more than 2000 journal publications indexed in WoS and Scopus. Results: The research findings highlight key issues related to technology, cybersecurity, data governance, regulations, and legal frameworks, providing a different perspective compared to human manual reviews of papers. Conclusions: Our search results confirm several recommendations. First, from a technological perspective, it is advised to increase support for the research and development of autonomous underwater vehicles and unmanned aerial vehicles, establish safety standards, mandate testing of wave model evaluation systems, and promote international standardization. Second, from a cyber–physical systems perspective, efforts should be made to strengthen logistics and supply chains for autonomous ships, establish data governance protocols, enforce strict control over IoT device data, and strengthen cybersecurity measures. Third, from an environmental perspective, measures should be implemented to address the environmental impact of autonomous ships. This can be achieved by promoting international agreements from a global societal standpoint and clarifying the legal framework regarding liability in the event of accidents.
Port selection is of vital importance for both port operators and shipping lines. In this contribution, an Automatic Identification System (AIS) big data approach is developed. This approach allows identifying container ships using only AIS data without the need for supplementary information from commercial databases. This approach is applied to investigate the port selection statistics of container ships between Shanghai and Ningbo Zhoushan Port, two of the largest ports in the world in terms of calling frequency, to generate practical insights. Results show that: i) the ratios among large ships, medium ships and small ships of these two ports are both approximately 1: 4: 5; ii) these two ports both have an exclusive (i.e., more feeder ports covered in geographical coverage) and intensive (i.e., more feeder ships deployed in shipping service frequency) collection and distribution network mainly consisting of small ships, but that of Shanghai is more intensive; iii) in terms of ultra-large ships over 380 m, Shanghai has accommodated an extra 18.5% compared to that of Ningbo Zhoushan, this indicates Shanghai's attraction for such vessels in global fleet deployment; iv) the feeder network between Shanghai and Ningbo Zhoushan is weak, and their relationship is actually in competition; v) Ningbo Zhoushan could offer more choices for ultra-large container ships (over 380 m), which implies its greater potential in future port competition; vi) when the depth of channels and berths is sufficient, the distance to hinterland and the convenience of a collection and distribution network begin to get more important in port selection. The empirical findings unveil the decision-making of container lines, competition between ports and implications for shipping policy.
The emissions of the maritime sector caused by ship transportation and other fossil fuel sources pose a threat to the environment and human health. It drives an increasing interest in adopting electrification solutions to revolutionize the conventional maritime energy-intensive and highly polluting industry. Accordingly, this thesis is one of the pioneering attempts to implement a seaport microgrid and carbon capture shore power system of cold ironing at a port dedicated to sustainability while remaining competitive.
However, the technological and research gaps of the conventional port scheduling paradigm constitute challenges in a synergy between the two prominent maritime electrification systems of seaport microgrids and cold ironing. The incorporation of cold ironing into seaport operations introduces new challenges to handling workflow and the potential impact of such integration has not yet been quantitatively addressed. Developing strategic management to improve port performance is always an issue for the port operators. This research gap motivated this study to develop an integrated operation and energy management framework by executing forecasting and optimization techniques for coordinating these technologies toward the emission neutrality goal.
This thesis begins with an extensive review of the significant aspects of cold ironing technology and seaport microgrids. A range of factors associated with the varying demand for cold ironing in seaport microgrids, requiring advanced forecasting techniques, are described in Chapter 2. Another challenge is that the integration of cold ironing with limited capacities increases the complexity of the existing seaside operation at port namely the berth allocation problem (BAP) and quay crane allocation problem (QCAP). It prolongs the waiting time for the ships to be served at berth. Thus, a seaside operational optimization model is developed in Chapter 3 to cooperatively schedule BAP, QCAP, and cold ironing assignment problems (CIAP). Chapter 4 integrates bilevel optimization as an energy management system (EMS) framework to coordinate the joint cold ironing with the seaport microgrid concept, providing more flexibility in energy scheduling while remaining cost-effective. Finally, Chapter 5 presents the overall conclusions of the thesis, research contribution, and future recommendations.
In this paper, we study a problem that integrates the vessel scheduling problem with the berth allocation into a collaborative problem denoted as the multi-port continuous berth allocation problem (MCBAP). This problem optimizes the berth allocation of a set of ships simultaneously in multiple ports while also considering the sailing speed of ships between ports. Due to the highly combinatorial character of the problem, exact methods struggle to scale to large-size instances, which points to exploring heuristic methods. We present a mixed-integer problem formulation for the MCBAP and introduce an adaptive large neighborhood search (ALNS) algorithm enhanced with a local search procedure to solve it. The computational results highlight the method's suitability for larger instances by providing high-quality solutions in short computational times. Practical insights indicate that the carriers’ and terminal operators’ operational costs are impacted in different ways by fuel prices, external ships at port, and the modeling of a continuous quay.
Shore power is an important green technology used by ports to reduce carbon emissions. This paper investigates how to design subsidy strategy for promoting the installation and utilization of shore power. However, while installation subsidies may promote the installation of SPI in ports, resulting in a reduction in ship emissions, utilization subsidies may attract more ship visits, which may increase the total emissions of a port. Therefore, subsidies for shore power utilization and installation should be optimized to minimize the cost to government (comprising the environmental costs of ship emissions, the cost of utilization or installation subsidies, and carbon taxes) and maximize the profit for ports (including profit from original and new ships, utilization and installation subsidies, and carbon taxes). Using the Stackelberg game methodology, we discuss five cases to give a comprehensive analysis of the design of different subsidy policies, including no subsidy, SPI-utilization subsidy undertaken by port, SPI-utilization subsidy undertaken by port and government, carbon emission tax policy considering SPI-utilization subsidy, and SPI-utilization and SPI-installation subsidies undertaken by port and government. Managerial insights are generated according to the theoretical analysis and numerical experiments results, which can give references to the government and port operators.
This study addresses a critical gap in environmental assessments by focusing on petrochemical port operations, an area traditionally overlooked in life cycle assessments (LCAs) of material supply chains. This study investigates various methods of loading for 22 petrochemical products i.e., gas, liquid, container, tanker, and bulk loading; at the biggest petrochemical port in the world situated in the Persian Gulf with a loading capacity of 35 MMt/yr. Twelve scenarios were developed to enhance environmental efficiency based on hotspots defined in LCAs of port loading operations of petrochemicals in their present state. Scenarios 1 through 5 consider electricity savings of 2%–10%, scenarios 6 through 10 consider renewable photovoltaic energy mix of 10%–50%, and scenarios 11 and 12 consider no flaring and rejection of ash waste from ships.
To prioritize these scenarios based on environmental efficiency gains, a comprehensive LCA-GRM hybrid model has been introduced. This integrated model combines life cycle assessment and gray relational modeling, providing a robust framework for evaluating and ranking the scenarios. The Best Worst Method (BWM) is implemented for weighing multiple environmental criteria, contributing to informed decision-making.
The findings underscore the substantial impact of electricity consumption and gas flaring in petrochemical port operations, prompting the identification of the 'no flaring' scenario (S11) as the most preferred option. Implementing this scenario could lead to significant reductions in climate change impacts (22.14%), ozone formation and human health impacts (16.73%), and photochemical oxidant formation (15.98%).
The study's significance lies in emphasizing the environmental implications of port operations and urging policymakers to integrate port impacts into broader supply chain assessments. We advocate for targeted strategies to enhance electricity efficiency and reduce gas flaring in petrochemical ports, aligning with global sustainability goals. The Comprehensive LCA-GRM hybrid approach offers valuable insights for decision-makers involved in the global transportation of goods through ports.
The term ‘innovation ecosystem’ has become popular among stakeholders involved in innovation. The core idea is that innovation does not thrive through isolated actions of individual companies, but rather depends on a broad array of interrelated actors, institutions and policies. In this paper, we apply the concept of innovation ecosystems to ports by first providing a theoretical overview of its components and then comparing the efforts to build such an ecosystem in the port cities of Rotterdam and Valencia. Our main findings are as follows. First, the importance of innovation for the ability of ports to continue to create ‘value for society’ is widely acknowledged. Second, research and development (R&D) activities in both Rotterdam and Valencia are relatively limited and the dominant innovation challenge is the early application of new technologies developed outside the ports industry. Third, a ‘systemic approach’ is required to understand the innovation ecosystem in ports, given the strong interrelations among companies in the port and the need for broad coalitions to implement new technologies. Fourth and fifth, human capital formation and research cooperation, respectively, play a central role in improving the port innovation ecosystem. Finally, the ecosystem in Rotterdam is ‘distributed and connected’ while Valencia is more centralised.