The shipping sector's rising greenhouse gas emissions are often considered “hard-to-abate”. Some ship-owners have recently adopted or started to consider the adoption of alternative fuels, but systematic studies of this are still lacking. We address this gap by studying how ship-owners differ in both actual and intended adoption of alternative fuels. We analyze data from a unique survey with 281 ship-owners in Norway, a major ship-owning country and center for maritime technology development, with descriptive statistics and analysis of variance. We find early adopters among large and established ship-owners in offshore, international cargo and domestic passenger shipping segments, which are often subjected to specific contractual demands for alternative fuel adoption. Laggards were typically small and young ship-owners operating in shipping segments where demands for alternative fuel adoption are weak. Our findings also suggest that firms' business strategy and financial and knowledge resources may have relevance for ship-owner's adoption of alternative fuels. Our study has implications for national and international policymaking, highlighting for example how contracting mechanisms can be an effective tool in incentivizing the adoption of alternative fuels.
To mitigate climate change due to international shipping, the International Maritime Organization (IMO) requires shipowners and ship technical managers to improve the energy efficiency of ships’ operations. This paper studies how voyage planning and execution decisions affect energy efficiency and distinguishes between the commercial and nautical components of energy efficiency. Commercial decisions for voyage planning depend on dynamic market conditions and matter more for energy efficiency than nautical decisions do for voyage execution. The paper identifies the people involved in decision-making processes and advances the energy-efficiency literature by revealing the highly networked nature of agency for energy efficiency. The IMO’s current energy efficiency regulations fail to distinguish between the commercial and nautical aspects of energy efficiency, which limits the ability to mitigate climate change through regulatory measures. Policymakers should expand their regulatory focus beyond shipowners and technical managers to cargo owners to improve energy efficiency and reduce maritime transport emissions.
Unmanned autonomous cargo ships may change the maritime industry, but there are issues regarding reliability and maintenance of machinery equipment that are yet to be solved. This article examines the applicability of the Reliability Centred Maintenance (RCM) method for assessing maintenance needs and reliability issues on unmanned cargo ships. The analysis shows that the RCM method is generally applicable to the examination of reliability and maintenance issues on unmanned ships, but there are also important limitations. The RCM method lacks a systematic process for evaluating the effects of preventive versus corrective maintenance measures. The method also lacks a procedure to ensure that the effect of the length of the unmanned voyage in the development of potential failures in machinery systems is included. Amendments to the RCM method are proposed to address these limitations, and the amended method is used to analyse a machinery system for two operational situations: one where the vessel is conventionally manned and one where it is unmanned. There are minor differences in the probability of failures between manned and unmanned operation, but the major challenge relating to risk and reliability of unmanned cargo ships is the severely restricted possibilities for performing corrective maintenance actions at sea.
This study proposes a new application for delay-dependent stability analysis of a shipboard microgrid system. Gain and phase margin values are taken into consideration in delay dependent stability analysis. Since such systems are prone to unwanted frequency oscillations against load disturbances and randomness of renewable resources, a virtual gain and phase margin tester has been incorporated into the system to achieve the desired stabilization specification. In this way, it is considered that the system provides the desired dynamic characteristics (e.g. less oscillation, early damping, etc.) in determining the time delay margin. Firstly, the time delay margin values are obtained and their accuracy in the terms of desired gain and phase margin values are investigated. Then, the accuracy of the time delay margin values obtained by using the real data of renewable energy sources and loads in the shipboard microgrid system is shown in the study. Finally, a real-time hardware-in-the-loop (HIL) simulation based on OPAL-RT is accomplished to affirm the applicability of the suggested method, from a systemic perspective, for the load frequency control problem in the shipboard microgrid.
This study presents a novel approach to forecast freight rates in container shipping by integrating soft facts in the form of measures originating from surveys among practitioners asked about their sentiment, confidence or perception about present and future market development. As a base case, an autoregressive integrated moving average (ARIMA) model was used and compared the results with multivariate modelling frameworks that could integrate exogenous variables, that is, ARIMAX and Vector Autoregressive (VAR). We find that incorporating the Logistics Confidence Index (LCI) provided by Transport Intelligence into the ARIMAX model improves forecast performance greatly. Hence, a sampling of sentiments, perceptions and/or confidence from a panel of practitioners active in the maritime shipping market contributes to an improved predictive power, even when compared to models that integrate hard facts in the sense of factual data collected by official statistical sources. While investigating the Far East to Northern Europe trade route only, we believe that the proposed approach of integrating such judgements by practitioners can improve forecast performance for other trade routes and shipping markets, too, and probably allows detection of market changes and/or economic development notably earlier than factual data available at that time.
Exploring how transnational environmental governance and the operation of global value chains (GVCs) intersect is key in explaining the circumstances under which mandatory disclosure can improve the environmental footprint of business operations. We investigate how the governance dynamics of the tanker shipping value chain (a major emitter of greenhouse gases) limits the effectiveness of the European Union (EU) monitoring, reporting, and verification (MRV) regulation, which mandates the disclosure of greenhouse gas emissions for ships calling at EU ports. Although MRV seeks to help shipowners and ship managers save fuel and reduce emissions, it does not address the complexity of power relations along the tanker shipping value chain and currently cannot disentangle how different actors influence the design, operational, commercial, and ocean/weather factors that together determine fuel consumption. In particular, the EU MRV neglects to reflect on how oil majors exert their power and impose their commercial priorities on other actors, and thus co-determine fuel use levels. We conclude that, in its current form, the EU MRV is unlikely to lead to significant environmental upgrading in tanker shipping. More generally, we argue that regulators seeking to facilitate environmental upgrading need to expand their focus beyond the unwanted behaviors of producers of goods and providers of services to also address the incentive structures and demands placed on them by global buyers.
As the emission legislation becomes further constraining, all manufacturers started to fulfill the future regulations about the prime movers in the market. Lean-burn gas engines operating under marine applications are also obligated to enhance the performance with a low emission level. Lean-burn gas engines are expressed as a cleaner source of power in steady loading than diesel engines, while in transient conditions of sea state, the unsteadiness compels the engine to respond differently than in the steady-state. This response leads to higher fuel consumption and an increase in emission formation. In order to improve the stability of the engine in transient conditions, this study presents a concept implementing a hybrid configuration in the propulsion system. An engine model is developed and validated in a range of load and speed by comparing it with the available measured data. The imposed torque into the developed engine model is smoothed out by implementing the hybrid concept, and its influence on emission reduction is discussed. It is shown that with the hybrid propulsion system, the NOX reduces up to 40% because of the maximum load reduction. Moreover, eliminating the low load operation by a Power Take In during incomplete propeller immersion, the methane slip declines significantly due to combustion efficiency enhancement.
Increasing concerns related to fossil fuels have led to the introducing the concept of emission-free ships (EF-Ships) in marine industry. One of the well-known combinations of green energy resources in EF-Ships is the hybridization of fuel cells (FCs) with energy storage systems (ESSs) and cold-ironing (CI). Due to the high investment cost of FCs and ESSs, the aging factors of these resources should be considered in the energy management of EF-Ships. This article proposes a nonlinear model for optimal energy management of EF-Ships with hybrid FC/ESS/CI as energy resources considering the aging factors of the FCs and ESSs. Total operation costs and aging factors of FCs and ESSs are chosen as problem objectives. Moreover, a stochastic model predictive control method is adapted to the model to consider the uncertainties during the optimization horizon. The proposed model is applied to an actual case test system and the results are discussed.
Just as containerized goods appear to flow seamlessly across the planet's oceans, internationalized and standardized certificates present seafaring labor as uniform and seamless. But underneath these certificates are the intimate and unequal entanglements of local masculinity norms, age, and kinship ties that sustain the maritime labor supply chain. In this article, we follow how three young, male seafarers from eastern India find ways to contain piracy risks at work and poverty risks at home, and their sense of obligation as men, sons, husbands, and fathers. By delving into the unequal conditions for industrial male workers from the Global South, this article demonstrates how containerized maritime labor commodities are not uniform but are dependent upon economic inequality and intimate kinship ties to be productive.
This paper addresses the connection between added wave resistance and required propulsion power of ships, having focus on the early stage of new ship designs, notably tankers and bulk carriers. The paper investigates how mean added wave resistance affects the required torque of a fixed pitch propeller and thus also the operational conditions of a directly coupled main engine. The interest of the study has its background in the assessment of minimum propulsion power, and the study considers the prescriptive guidelines of the IMO as basis. Specifically, the study focuses on an assessment of the minimum forward speed attainable under consideration of the propeller light running margin and static load limits of engines in the early phase of new ship designs, where details of hull geometry are not available. The study considers three semi-empirical methods for predicting mean added wave resistance. All methods are known to be applied in the industry, emphasising that only methods relying solely on main particulars, together with information about sea state and advance speed, are of interest. The paper contains a case study used to illustrate the importance of the added wave resistance prediction with respect to the loading of the main engine. It is shown that, despite small absolute differences, the consequence in relation to the loading of the propeller and hereby the directly coupled main engine can be relatively large. Furthermore, the study illustrates that the propeller light running margin of a fixed pitch propeller directly coupled to the main engine has crucial influence on the attainable speed during adverse weather conditions.