Offshore wind energy production has seen a significant expansion in recent years. With technologies rapidly improving and prices dropping, it is now one of the key instruments in the green energy transition. The implications of offshore wind farm expansion for maritime security and ocean governance have, so far, received sparse attention in the literature. This article offers one of the first thorough analyses of the security of offshore wind farms and related installations, such as underwater electricity cables, energy islands, and hydrogen plants. The technical vulnerabilities of wind farm systems is reviewed and threats from terrorism, crime and State hostilities, including physical and cyber risk scenarios, are discussed. The expansion of green offshore energy production must keep pace with the changing threat landscape that follows from it. Prospective solutions for the protection of wind farms systems, including surveillance, patrols and self-protection are discussed. The current repertoire of maritime security solutions is in many ways capable of dealing with the threats and risks effectively if adjusted accordingly. The analysis builds important new bridges between debates in energy security and maritime security, as well as the implications of climate change adaption and mitigation for security at sea.
The hybrid combination of hydrogen fuel cells (FCs) and batteries has emerged as a promising solution for efficient and eco-friendly power supply in maritime applications. Yet, ensuring high-quality and cost-effective energy supply presents challenges. Addressing these goals requires effective coordination among multiple FC stacks, batteries, and cold-ironing. Although there has been previous work focusing it, the unique maritime load characteristics, variable cruise plans, and diverse fuel cell system architectures introduce additional complexities and therefore worth to be further studied. Motivated by it, a two-layer energy management system (EMS) is presented in this paper to enhance shipping fuel efficiency. The first layer of the EMS, executed offline, optimizes day-ahead power generation plans based on the vessel's next-day cruises. To further enhance the EMS's effectiveness in dynamic real-time situations, the second layer, conducted online, dynamically adjusts power splitting decisions based on the output from the first layer and instantaneous load information. This dual-layer approach optimally exploits the maritime environment and the fuel cell features. The presented method provides valuable utility in the development of control strategies for hybrid powertrains, thereby enabling the optimization of power generation plans and dynamic adjustment of power splitting decisions in response to load variations. Through comprehensive case studies, the effectiveness of the proposed EMS is evaluated, thereby showcasing its ability to improve system performance, enhance fuel efficiency (potential fuel savings of up to 28%), and support sustainable maritime operations.
As ocean space increasingly is used for production purposes, such as for the production of food and feed, renewable energy and resource mining, competition for space becomes a concern. A spatial solution to this is to co-locate activities in a multi-use setting. Next to the direct (financial) costs and benefits of multi-use and the societal cost and benefits, there are other factors, in the realm of legal aspects, insurance, health and safety issues and the overall governance of multi-use, that determine whether multi-use can be implemented successfully. This includes transaction costs that arise when for example non-adequate regulation, governance and insurance schemes are in place. Based on the analysis of five case studies across Europe these combined/collective transaction costs of multi-use are analysed and suggestions how to reduce and/or overcome these transaction costs are presented.
Offshore wind energy production has seen a significant expansion in the past decade and has become one of the most important maritime activities. However, the implications of offshore wind farm expansion for maritime security have, so far, received sparse attention in the literature. In this article we conduct one of the first thorough analyses of the security of offshore wind farms and related installations, such as underwater electricity cables, energy islands, and hydrogen plants.
Power-to-X plants can generate renewable power and convert it into hydrogen or more advanced fuels for hard-to-abate sectors like the maritime industry. Using the Bornholm Energy Island in Denmark as a study case, this study investigates the off-grid production e-bio-fuel as marine fuels. It proposes a production pathway and an analysis method of the oil with a comparison with e-methanol. Production costs, optimal operations and system sizing are derived using an open-source techno-economic linear programming model. The renewable power source considered is a combination of solar photovoltaic and off-shore wind power. Both AEC and SOEC electrolyzer technologies are assessed for hydrogen production. The bio-fuel is produced by slow pyrolysis of straw pellet followed by an upgrading process: hydrodeoxygenation combined with decarboxylation. Due to its novelty, the techno-economic parameters of the upgraded pyrolyzed oil are derived experimentally. Experimental results highlight that the upgrading reaction conditions of 350 °C for 2h with one step of 1h at 150 °C, under 200 bars could effectively provide a fuel with a sufficient quality to meet maritime fuel specifications. It requires a supply of 0.014 kg H2/kgbiomass. Modeling results shows that a small scale plant constrained by the local availability of and biomass producing 71.5 GWh of fuel per year (13.3 kton of methanol or 7.9 kton of bio-fuel), reaches production costs of 54.2 €2019/GJmethanol and 19.3 €2019/GJbio-fuel. In a large scale facility, ten times larger, the production costs are reduced to 44.7 €2019/GJmethanol and 18.9 €2019/GJbio-fuel (scaling effects for the methanol pathway). Results show that, when sustainable biomass is available in sufficient quantities, upgraded pyrolysis oil is the cheapest option and the less carbon intensive (especially thanks to the biochar co-product). The pyrolysis unit represents the main costs but co-products revenues such as district heat sale and biochar as a credit could decrease the costs by a factor three.
This report explores key challenges and priorities in safeguarding Europe's critical energy infrastructure against both physical and cyber threats amid rising geopolitical tensions. It follows recent sabotage incidents and the extensive development of new offshore energy infrastructure planned in maritime zones.
Strengthening defenses against the multifaceted threats to Europe's energy system is crucial and the analysis is essential reading for grasping the urgent need for improved security measures and international collaboration to protect the continent's vital energy assets.
The climate emergency has prompted rapid and intensive research into sustainable, reliable, and affordable energy alternatives. Offshore wind has developed and exceeded all expectations over the last 2 decades and is now a central pillar of the UK and other international strategies to decarbonise energy systems. As the dependence on variable renewable energy resources increases, so does the importance of the necessity to develop energy storage and nonelectric energy vectors to ensure a resilient whole-energy system, also enabling difficult-to-decarbonise applications, e.g. heavy industry, heat, and certain areas of transport. Offshore wind and marine renewables have enormous potential that can never be completely utilised by the electricity system, and so green hydrogen has become a topic of increasing interest. Although numerous offshore and marine technologies are possible, the most appropriate combinations of power generation, materials and supporting structures, electrolysers, and support infrastructure and equipment depend on a wide range of factors, including the potential to maximise the use of local resources. This paper presents a critical review of contemporary offshore engineering tools and methodologies developed over many years for upstream oil and gas (O&G), maritime, and more recently offshore wind and renewable energy applications and examines how these along with recent developments in modelling and digitalisation might provide a platform to optimise green hydrogen offshore infrastructure. The key drivers and characteristics of future offshore green hydrogen systems are considered, and a SWOT (strength, weakness, opportunity, and threat) analysis is provided to aid the discussion of the challenges and opportunities for the offshore green hydrogen production sector.
The cold ironing system is gaining interest as a promising approach to reduce emissions from ship transportation at ports, enabling further reductions with clean energy sources coordination. While cold ironing has predominantly been applied to long-staying vessels like cruise ships and containers, feasibility studies for short-berthing ships such as ferries are limited. However, the growing demand for short-distance logistics and passenger transfers highlights the need to tackle emissions issues from ferry transportation. Incorporating electrification technology together with integrated energy management systems can significantly reduce emissions from ferry operations. Accordingly, this paper proposes a cooperative cold ironing system integrated with clean energy sources for ferry terminals. A two-stage energy management strategy combining sizing and scheduling optimization is employed to reduce the port's emissions while minimizing system and operational costs. The proposed system configuration, determined through the sizing method, yields the lowest net present cost of $9.04 M. The applied energy management strategy managed to reduce operational costs by up to 63.402 %, while significantly decreasing emissions from both shipside and shoreside operations. From the shipside, emissions reductions of 38.44 % for CO2, 97.7 % for NOX, 96.69 % for SO2, and 92.1 % for PM were achieved. From the shoreside, the approach led to a 28 % reduction across all emission types. Thus, implementing cold ironing powered by clean energy sources is a viable solution for reducing emissions generated by ferry operations. The proposed energy management approach enables emissions reduction and delivering cost-effectiveness at ferry terminals.
In this paper, a novel configuration of a pumped thermal electricity storage system is proposed which can integrate excess thermal energy from different renewable thermal energy sources, e.g. concentrated solar power, waste heat and deep geothermal energy plants, as well as excess electricity from direct electricity generating renewable energy sources, e.g. solar photovoltaic and wind energy plants. The proposed configuration can also be used as a retrofit option to existing conventional fossil fuel-based power plants. A conventional two-tank sensible heat storage is used as a thermal energy storage system that can be charged using direct renewable thermal energy and using a heat pump utilizing excess electricity. Different discharging cycles, including a Joule–Brayton system and a conventional steam Rankine cycle system, can be used. The proposed system can achieve a higher capacity factor compared to those of stand-alone plants.
As a case study, a conventional two-tank molten salt-based thermal energy storage system integrating concentrated solar power, considering a heliostat system, and a solar photovoltaic plant is investigated. The overall operational strategy of the plant was developed and based on that annual simulations were performed for a selected configuration. The results of the case study suggest that for a given requirement of capacity factor, the final selection of the capacities of the solar photovoltaic plant, heat pump and heliostat field should be done based on the minimum levelized cost of energy. Moreover, for high capacity factor requirements, the proposed configuration is promising.
Ice-breaking cones are commonly used in the design of marine structures in cold regions. This study investigates the effects of higher-harmonic wave loads and wave runup on a 5-MW offshore wind turbine with and without ice-breaking cones under extreme wave conditions on the Liaodong Peninsula in China. Two ice-breaking cones (upward-downward and inverted types) are considered. The numerical model adopts a two-phase flow by solving unsteady Reynolds-averaged Navier-Stokes (URANS) equations using the volume of fluid (VOF) method. A phase decomposition method through a ‘Stokes-like’ formulation was adopted to obtain the parameters for each harmonics. The presence of the conical part is seen to increase the second-harmonic wave loads by up to 40%, but it has only limited influence on the fourth and fifth harmonics. The upward-downward-type ice-breaking cone increases the third harmonic, while the inverted-type ice-breaking cone decreases the third harmonic. Due to the phase difference between the first-harmonic and higher harmonics, the largest wave runup occurs at 0°, and 135° is the location with the smallest wave runup. This is because at the 135-degree location, the linear component is positive but the other nonlinear components are negative. For the 0-degree location, all harmonics are positive. By contrast, the inverted type has little effect. The high harmonic wave runup of the minimum point is backwards compared with that of the monopile, and most nonlinear wave runups are different upstream of the monopile.