In the hydroelastic analysis of large floating structures, the structural and hydrodynamic analyses are coupled, and the structural stiffness plays an important role in the accurate prediction of the response. However, there is usually a large difference between the longitudinal and the cross-sectional scales of modern ships, and the sectional configurations are generally complex, making it difficult to obtain the exact structural stiffness. Using a full finite element model to calculate the structural stiffness is inevitably time-consuming. Since modern ship structures are usually nearly periodic in the longitudinal direction, we treat the hull as a periodic Euler–Bernoulli beam and use a novel implementation of asymptotic homogenization (NIAH) to calculate the effective stiffness. This can greatly improve the computational efficiency compared with a full finite element model. Based on a combination of finite element and finite difference methods, we develop an efficient analysis technique to solve the hydroelastic problem for nearly-periodic floating structures. The finite element method is used to efficiently calculate the structural stiffness, and the finite difference method is used to solve the hydrodynamic problem. This proposed technique is validated through several test cases with both solid and thin-walled sections. A range of representative mid-ship sections for a container ship are then considered to investigate the influence of both transverse and longitudinal stiffeners on the structural deformations. A simple method for including non-periodic end effects is also suggested.
Nowadays, the coastal communities around the world face challenges related to increasing energy consumption, rising energy costs, enchaining of conventional or non-renewable energy resources, climate change, environmental problems, and so on. Therefore, many countries intend to implement different policies to develop clean energy production. There has been a new paradigm in policy from the utilization of greenhouse gases (GHGs), particularly CO2, toward sustainable energy resources to access a high level of security and reliability. This chapter discusses the new trends of hybrid marine power systems and analyzes various sustainable resources, such as PV, tidal turbines, and wind turbines. In addition, the applications of various battery systems to alleviate the randomness and unpredictable features of green energy resources have been studied. In this regard, the capability of various types of energy storage units, such as electrochemical, electromagnetic, and thermal, are presented. The restrictions and opportunities of combining the various technologies in the ship power systems have been investigated from both economic and environmental perspectives. Finally, the energy management problem of two case studies of sero-emissions ferry boats as a promising way to reduce GHGs is presented.
The protection of critical maritime infrastructures has become a top political priority, since the September 2022 attacks on the Nord Stream pipelines in the Baltic Sea. This contribution reveals why the protection of infrastructures at sea is a difficult task. Reviewing the spectrum of maritime infrastructures (transport, energy, data, fishing, ecosystems) and the potential threats to them (accidents, terrorism, blue crime, grey zone tactics) demonstrates that designating infrastructures as critical and worthy of special protection measures is a political choice. The analysis moreover shows the need of protective instruments that are tailored to the specificities of maritime space, and the need for integrating diverse policy fields, including defense, diplomacy, marine safety, maritime security and cyber security. Cooperation with the infrastructure industry, enhanced surveillance and investments in repair capacities are also required.
Marine flexible pipe/cables, such as umbilicals, flexible pipes and cryogenic hoses, are widely adopted in ocean engineering. The reinforcing armor layer in these pipe/cables is the main component for bearing loads, which is a typical multi-layer helically wound slender structure with different winding angles for different devices. There has been no general theoretical methodology to describe the tensile performance of these flexible pipe/cables. This paper first introduces a theory to solve the tensile mechanical behavior of a helically wound structure. Based on the curved beam theory, a solution of the tensile stress of a helically wound slender is derived. Then, the deformation mechanism of the marine flexible pipe/cables structure with different winding angles is studied. Through comparing theoretical and numerical results, the deformation characteristic of the helically wound slender structure is further explained. It is found that a sectional torsional deformation generates when the structure with a larger winding angle is under tension condition, while the sectional deformation of the structure with a smaller winding angle is mainly tension. Finally, a couple types of marine flexible pipe/cables under the tension condition are provided to analyze the mechanical performance and compare the difference between different theoretical models. The research conclusion from this paper provides a useful reference for the structural analysis and design of marine flexible pipe/cables.
Offshore jacket foundations for wind turbine generators are in risk of metal fatigue at the weldedjoints due to the highly dynamic wind and wave loading. The complex multiaxial stresses occurringat the welded joints can be nonproportional and lead to increased fatigue damage as compared toproportional stresses. Furthermore, several random effects influence the response of the offshorestructures and the fatigue lives of the welded joints.
In this thesis, the fatigue response of welded joints in offshore jacket structures is assessed. The influence of nonproportional stress states on the fatigue life has been examined using experimental fatigue data from literature by modelling the published experiments using the finite element method (FEM) and assessing the stress states using the notch stress approach. The results show that a nonzero phaseshift between the governing normal and shear stress at the weld toe leads to increased damages at the weld. An approach for determining the nonproportionality penalty factors for obtaining correct fatigue life estimations has been proposed.
To quantify the level of nonproportionality in the stress states at welds a new quantification approach has been developed based on the principal component analysis (PCA). The approach is easy to implement and simple to interpret, which is often difficult for many of the already published methods. The PCAbased approach is furthermore extended to be used with variable amplitude stress states. By implementing the developed quantification approaches in the fatigue life calculation framework, it is possible to determine if nonproportionality occurs and to account for this in the fatigue life estimation automatically using the estimated penalty factors.
The stochastic finite element method (SFEM) has been used to implement approaches for considering the spatial variability occurring in the jacket structures and welds. Closedform solutions to the stochastic stiffness and stress stiffness matrices have been proposed, making it possible to easily implement the spatial variability of the bending rigidity and other parameters in beam FE models. The matrices have been developed for both classical EulerBernoulli and Timoshenko beam theory and are based on the KarhunenLoéve (KL) expansion for random field discretization. The KL expansion is then further used to formulate a stochastic size effect that takes into account that longer welds tend to fail earlier than shorter welds when considering fatigue. Other approaches for taking into account the size effect are often based on statistical evaluation of fatigue experiments which is used to determine a deterministic calibration factor. The stochastic size effect makes it possible to simulate the randomness in a full weld independently of the highest stressed zones. Using this method, the quality of the welding can be simulated and used to predict more accurate fatigue lives.
In order to design more fatigue resistant welded joints in offshore jacket structures, automatic optimization of the welded joints is required. Already published approaches to do so, often focus on only a few simple fatigue criteria. For an optimization framework to be efficient it has to take into account the complex multiaxial nonproportional fatigue and the stochastic effects of the welds. In the thesis, an optimization framework for fatigue life estimation using the developed PCAbased quantifier and the stochastic size effect has been developed. The framework is easy to use and based on simple formulations, making it possible to implement many types of fatigue criteria without having to reformulate the optimization procedure. The framework has been used to optimize the weld locations in a cast steel jacket insert and shows that considerable mass savings can be achieved by automatic
optimization.
This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challenges related to energy-producing offshore structures. This paper also discusses the analysis tools that are most needed to enable sustainable designs for future ships and offshore structures. The last section of the paper contains thoughts on the role of universities in education, research, and innovation regarding marine structures. It discusses curriculum requirements for maritime-technology education, basic research activities, and international cooperation.