The literature on climate change in the maritime transport industry has grown rapidly in the last few years. Yet as the research agenda has progressed, scientific debates have become more isolated and fragmented, making it difficult to translate new findings into broader policy debates. This article draws on problematization methodology to help organize the scientific debate on maritime emissions and to identify analytical gaps and challenges. We argue that scholars investigate shipping's emission problem from four distinct analytical perspectives— (1) international laws and regulations, (2) markets and economics, (3) engineering and technology, and (4) authority and legitimacy. Each of these perspectives problematizes maritime emissions in specific ways, leading to different policies and strategies to address the problem. We call for better integrating these four literatures and highlight three crosscutting areas and problems for future research. First, developing institutions that facilitate market and engineering solutions; second, integrating climate mitigation and adaptation research; and third, focusing on justice concerns to ensure an equitable green transition in the maritime industry.
Since the outbreak of COVID-19, its impacts on the maritime transportation and logistics field have been multi-dimensional. In addition to the green shipping corridor proposed by the Clydebank Declaration in the United Kingdom in 2021, port digitalisation and decarbonisation of the maritime industry have become focal issues in the field. The industry needs a new framework to offset the negative impacts of the pandemic and to accommodate integrated technologies comprising of artificial intelligence (AI), blockchain, cloud systems, internet of things (IoT) and others, which have been applied to the industry. Having considered these circumstances, this paper aims to propose the 6th-generation ports model with smart port (6GP) as a new framework for the port logistics industry in the post-COVID-19 period. The proposed 6GP contributes to providing business development strategy and port development policy for stakeholders in the industry in the post-pandemic era reflecting focal challenges such as digitalisation, decarbonisation, sustainability and smart transformation. It also contributes to expanding port devolution theory from the fifth-generation ports (5GP) to 6GP.
The design of emission control areas (ECAs), including ECA width and sulfur limits, plays a central role in reducing sulfur emissions from shipping. To promote sustainable shipping, we investigate an ECA design problem that considers the response of liner shipping companies to ECA designs. We propose a mathematical programming model from the regulator’s perspective to optimize the ECA width and sulfur limit, with the aim of minimizing the total sulfur emissions. Embedded within this regulator’s model, we develop an internal model from the shipping liner’s perspective to determine the detoured voyage, sailing speed, and cargo transport volume with the aim of maximizing the liner’s profit. Then, we develop a tailored hybrid algorithm to solve the proposed models based on the variable neighborhood search meta-heuristic and a proposition. We validate the effectiveness of the proposed methodology through extensive numerical experiments and conduct sensitivity analyses to investigate the effect of important ECA design parameters on the final performance. The proposed methodology is then extended to incorporate heterogeneous settings for sulfur limits, which can help regulators to improve ECA design in the future.
The Nordic countries are ranked among the most gender equal countries worldwide. Equality, political, and civil rights, leading to the high participation of women in the workforce, have paved the way for this egalitarian view. However, women remain the minority in managerial positions in general, and they are also strongly underrepresented in many male‐dominated sectors of the blue economy. The aim of this article is to introduce and discuss gender equality in the blue economy, and to assess the status of gender research in the Nordic context. To achieve this, a purposive interdisciplinary literature review resulted in three encompassing themes on how women’s participation is hindered, overlooked, and undervalued. Using these themes as an analytical lens, we propose that the underlying mechanisms are similar within fisheries, aquaculture, and maritime transportation in how they affect women’s participation. Still, there is a lack of statistics and research within parts of the blue sector. To move forward, there needs to be a shift in focus from policy to practice. One starting point could be to implement current knowledge, e.g., regarding workplace design and tailoring equipment to fit a diverse workforce. We call for scaling up best practices and evaluating policy performance and effectiveness. These are prerequisites for sustainable recruitment and retention of the blue sector workforce and the only way forward for countries aspiring to be truly gender equal.
This paper presents a detailed risk assessment framework tailored for retrofitting ship structures towards eco-friendliness. Addressing a critical gap in current research, it proposes a comprehensive strategy integrating technical, environmental, economic, and regulatory considerations. The framework, grounded in the Failure Mode, Effects, and Criticality Analysis (FMECA) approach, adeptly combines quantitative and qualitative methodologies to assess the feasibility and impact of retrofitting technologies. A case study on ferry electrification, highlighting options like fully electric and hybrid propulsion systems, illustrates the application of this framework. Fully Electric Systems pose challenges such as ensuring ample battery capacity and establishing the requisite charging infrastructure, despite offering significant emission reductions. Hybrid systems present a flexible alternative, balancing electric operation with conventional fuel to reduce emissions without compromising range. This study emphasizes a holistic risk mitigation strategy, aligning advanced technological applications with environmental and economic viability within a strict regulatory context. It advocates for specific risk control measures that refine retrofitting practices, guiding the maritime industry towards a more sustainable future within an evolving technological and regulatory landscape.
Reverse Logistics (RL) of end-of-use/end-of-life products has become a vital part of circular economy practices for manufacturers. However, significant quantities of resources are still landfilled instead of being recovered. With mounting pressure on businesses to address the sustainability crises (resources, climate change, waste, toxicity) on account of the take-make-dispose-based linear economy, companies today realise the importance of RL but face several barriers to implementing it, including a lack of knowledge. Although several studies have investigated different aspects of RL in various industries in different country settings, less attention has been devoted to developing a systematic and holistic approach for designing and implementing RL. To address these gaps, this paper reviews 116 scholarly articles published between 2011 and 2021 to identify attributes related to the design and implementation of RL systems. Based on a systematic literature review, a conceptual framework is presented covering the key activities, drivers and barriers, stakeholder engagement and performance management in RL. Such a framework can support companies evaluate different approaches and strategies, as well as the opportunities and challenges of designing and implementing RL and transitioning towards a Circular Economy.
Port clusters are expected to play a significant role in the transition towards a circular economy, both at the level of facilitating regional and global transport within circular production chains, as well as hosting circular activities in port areas. There is strong evidence that significant investments in the circular economy (CE) are being made in port areas, albeit without much knowledge on their impacts. To ensure an efficient use of port resources in view of this transition, these impacts should be adequately monitored. Research on circular economy indicators for ports is still in an exploratory stage, characterized by an absence of in-depth research on the development of port-related circular economy indicators. This paper focuses on the development of a comprehensive set of relevant and feasible CE indicators, which aim to support port managing bodies (PMBs) as well as port stakeholders to monitor the CE transition taking place. Through multimethod qualitative research, including content analysis, focus groups, a gap analysis and a qualitative survey, an actionable list of CE 12 indicators for ports was developed. Seven of which are highly feasible and five of which have medium feasibility in terms of stakeholder relevance and ease of implementation. Findings related to (1) the overall limited CE ambition levels of PMBs and (2) the difference in the values of some indicators for different port typologies are also discussed. The value of this study for practitioners lies in providing them with an actionable set of KPIs which can support their efforts and communication related to their CE transition.
Most regulatory tools for low-carbon transition are jurisdiction-specific, respecting the principle of national sovereignty. Although possibly locally successful, they typically capture only scope 1 and scope 2 emissions. Value chains-related (scope 3) emissions remain largely unregulated. This is problematic, as global value chains are commonly organized across multiple jurisdictions with different climate policy ambitions. Products are often produced at different location than where they are consumed, and production-related emissions are transferred with the products. These emissions embedded in imported products amount to large volumes (e.g. in the EU estimated to about 30% of member state’s national emissions). This chapter gathers the scientific evidence on upstream scope 3 emissions and discusses the available regulatory toolbox for reducing those. Both private and public regulatory tools are represented as well as soft and hard regulatory tools, and modifications between those categories. The interactions between the various types of regulation are discussed with the aim to identify possible synergies and conflicts. The chapter takes the EU as its starting point and draws in examples from other jurisdictions where relevant.
This paper introduces a resilience assessment methodology for sustainable autonomous maritime transport networks developed by the European project entitled “Advanced, Efficient, and Green Intermodal Systems” (AEGIS). This problem being addressed in this paper concerns the investigation of threats, incidents, and risks in an autonomous- and sustainable shipping context, and the research question is the development of both preventive measures and reactive actions to maintain an acceptable level of operational constraints. The paper's methodology aids in designing sustainable logistics systems for highly automated waterborne transport, identifying threats and barriers to mitigate event consequences, thereby facilitating a seamless green transition. To examine the usability, this methodology is applied in a case study for cargo transportation, where we in this paper consider the maritime corridor between Trondheim and Rotterdam. The findings encompass the spectrum of possible actions to prevent and mitigate unwanted events and enhance resilience and flexibility. This can be used as a tool to respond to unwanted threats, enhance safety, and introduce new strategies. These results are deemed important as resilience is one of the prerequisites for the development of a sustainable transport system. This is true both for the companies that are engaged in the operation of such systems and for policymakers.
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050, we find that offshore hydrogen generation may likely only play a limited role, and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions, which result in deep decarbonisatiton of the energy system towards 2050, hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage, this is the most cost-effective solution to satisfy future hydrogen demand. Overall, we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system, but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.