An efficient extreme ship response prediction approach in a given short-term sea state is devised in the paper. The present approach employs an active learning reliability method, named as the active learning Kriging + Markov Chain Monte Carlo (AK-MCMC), to predict the exceedance probability of extreme ship response. Apart from that, the Karhunen-Loève (KL) expansion of stochastic ocean wave is adopted to reduce the number of stochastic variables and to expedite the AK-MCMC computations. Weakly and strongly nonlinear vertical bending moments (VBMs) in a container ship, where the former only accounts for the nonlinearities in the hydrostatic and Froude-Krylov forces, while the latter also accounts for the nonlinearities in the radiation and diffraction forces together with slamming and hydroelastic effects, are studied to demonstrate the efficiency and accuracy of the present approach. The nonlinear strip theory is used for time domain VBM computations. Validation and comparison against the crude Monte Carlo Simulation (MCS) and the First Order Reliability Method (FORM) are made. The present approach demonstrates superior efficiency and accuracy compared to FORM. Moreover, methods for estimating the Mean-out-crossing rate of VBM based on reliability indices derived from the present approach are proposed and are validated against long-time numerical simulations.
This study proposes a novel tower damping system to enhance the structural performance of the NREL 5 MW semi-submersible wind turbine under operational and extreme load conditions. Environmental load data from the Norwegian MET center was analyzed to characterize the loading conditions for floating offshore wind turbines (FOWT). The probability density spectrum of sea state data was employed to identify operational load conditions. At the same time, the Inverse First-Order Reliability Method (IFORM) was used to derive the 50-year extreme sea state. Perform a fully coupled Aero-Hydro-Servo-Elastic simulation of the FOWT dynamic model with a damping system using OrcaFlex software. The results reveal that: Under operational sea states, the turbine tower-top displacement was reduced by 60–70%, and acceleration by 30–40%, enhancing tower-top stability. Under extreme loads, tower-top acceleration was reduced by 5–7%, and displacement by 6–8%. Cumulative damage assessments indicate a reduction in fatigue damage of up to 72%, with the effective fatigue life of the tower base extended by 136%. The proposed damping system significantly reduces vibration under fatigue and extreme load conditions.
This study presents a detailed quantification of how flow orientation affects mass transfer and frictional resistance in periodically confined channels, offering novel insights into the physical similarity relations governing these phenomena. We constitute that the Sherwood number and friction factor adhere to universal scaling laws of the form Sh = A1+B sin(2α) Re1 2 and f = A1+B sin(2α) Re−1 2 , where α depicts the orientation of the periodically confined channel. It is found that the flow orientation and the cross flow velocity independently affect both, the Sherwood number and the friction factor. A key contribution of this work is the explicit characterization of the flow orientation: a 45° rotation of the flow relative to the spacer structure increases the Sherwood number by nearly 25%, while the friction factor rises by approximately 20%. These findings highlight a fundamental trade-off between mass transfer enhancement and flow resistance, suggesting that any process optimization must carefully balance the gains in mixing efficiency against the increased energy dissipation. This study provides a robust framework for further investigations into how periodic geometrical constraints influence transport processes in complex flow systems.
Physical model tests are often conducted during the design process of coastal structures. The wave climate in such tests often includes short-crested nonlinear waves. The structural response is related to the incident waves measured in front of the structure. Existing methods for separation of incident and reflected short-crested waves are based on linear wave theory. For analysis of nonlinear waves, the existing methods are limited to separation of nonlinear long-crested waves. For short-crested waves, the only options so far have been to use estimates without the structure in place. The present paper thus presents a novel method for directional analysis of nonlinear short-crested waves: Non-Linear Single-summation Oblique Reflection Separation (NL-SORS). The method is validated on numerical model data, as for such data, the target is well defined as simulations may be performed with fully absorbing boundaries. Second- and third-order wave theory is used to demonstrate that small errors on the celerity of nonlinear components in the mathematical model of the surface elevation can be obtained if a double narrow-banded directional spectrum is assumed, ie the primary frequency and the directional spreading function must be narrow banded. As the increasing nonlinearity of the waves often arise from waves shoaling on a sloping foreshore, the directional spreading of the waves will decrease due to refraction, and a broad directional spreading function will thus not be experienced in highly nonlinear conditions. The new NL-SORS method is shown to successfully decompose nonlinear short-crested wave fields and estimate the directional spectrum thereof.
A two-dimensional (2D) Reynolds-averaged Navier–Stokes (RANS) equations solver with k–ω turbulence closure is developed, employing immersed boundary (IB) technique on Cartesian grids. Generalized wall functions are introduced to enhance computational efficiency for problems with high Reynolds numbers. To address existing challenges in applying wall functions within IB methods, a novel, effective and easy-to-implement strategy is proposed. Another distinguishing feature of this turbulent-flow solver is that it employs the highly accurate immersed-boundary generalized harmonic polynomial cell (IB-GHPC) method to solve the Poisson equation for fluid pressure. The new solver is firstly validated by simulating channel flows on both hydraulically smooth and rough walls, achieving excellent agreement with benchmark experimental and numerical studies for various flow parameters including velocity, turbulent kinetic energy and shear stress. For channel flow simulations, our implementation of generalized wall functions using the proposed strategy results in a remarkable reduction of grid nodes by over 80%. Moreover, the solver is applied to simulate flow around both smooth and rough cylinders, producing promising results for drag, lift, and pressure coefficients. Our analysis demonstrates a robust performance of the developed solver in modeling turbulent flows based on Cartesian grids, offering a substantial improvement in computational efficiency for tackling problems involving large Reynolds numbers.
Mooring failures significantly threaten the stability of Floating Offshore Wind Turbines (FOWT) under extreme environmental conditions. This study presents an innovative shared damping mooring system incorporating Seaflex dampers to improve structural stability and operational reliability. Dynamic simulations under 1-year and 50-year return period sea states demonstrate the system’s effectiveness. Under Ultimate Limit State (ULS) conditions, the system reduces surge displacement by 59%, pitch angle by 47%, and mooring line tension by 72%. Under Accidental Limit State (ALS) conditions, it mitigates load spikes, reduces drift displacement by 60%, and improves safety factors by 50%. The comparison shows chain and wire rope configurations have better load reduction performance in the shared damping scheme. Lightweight and adaptable, the Seaflex dampers enhance broad-spectrum damping without affecting platform buoyancy. This study provides a robust solution for improving FOWT safety and durability in harsh marine environments, enabling large-scale offshore wind energy development.
A serious ship-bridge collision accident happens about once a year. These accidents cause fatalities and large economic losses due to loss of transportation service and replacement cost of the bridge structure. One of the most recent, widely published, ship-bridge collisions was the collision where the containership Dali in 2024 collided with the Baltimore Key Bridge in the US city of Baltimore. The resulting collapse of the bridge girder caused six fatalities as well as large financial losses. One effect of this event has been that engineers around the world now are being engaged in evaluation of the vulnerability of existing bridges and establishment of rational design criteria for new bridges.
The presentation will outline elements of a rational design procedure for bridge structures against ship collision impacts. A set of risk acceptance criteria will be proposed and a mathematically based procedure for calculation of the probability of ship collision accidents caused by human as well as technical errors will be presented. This first part of the presentation leads to identification of the largest striking ship, “design vessel”, a given bridge element must withstand without structural failure in order for the bridge connection to fulfil the risk acceptance criteria.
The final part of the presentation will be devoted to an analysis of the needed impact capacity for the bridge pylons and piers exposed to ship bow impact loads from design vessels. A procedure will be described for derivation of expressions for ship bow crushing forces, which can be used in design against ship collision impacts. The resulting collision force expressions are verified by comparison with large-scale laboratory experiments and an analysis of a fullscale shipping accident. Finally, the proposed impact force expressions will be compared with existing standards for modelling ship collisions against bridges as published by AASHTO, IABSE and Eurocode.
As maritime technology advances, multi-energy ship microgrids (MESMs) are widely used in large cruise tourism. In this context, studying cost-effective and highly reliable energy system planning methods for MESMs in their entire lifespan becomes paramount. Therefore, this paper proposes a joint planning method for a MESM during its lifetime. Firstly, a long timescale coordinated planning and operation scheme is formulated with the aim of maximizing the Net Present Value (NPV) value, thereby reducing both project investment and energy supply cost. In addition, this paper introduces novel operation models that incorporate customer thermal comfort levels, considering thermal inertia, and ship navigation, accounting for the effects of waves and wind. These models enhance the flexibility and practicality of the planning process. Finally, to ensure the safe operation of vessels and alleviate the negative effects of uncertain wind and waves during ship navigation, a robust optimization (RO) approach is employed. A case study demonstrates the effectiveness of the proposed method, with several comparison analyzes further highlighting its advantages.
Our recent experimental investigations of flexible side-by-side blades under both steady and unsteady flows have observed flutter in both scenarios. Flutter significantly impacts blade kinematics and the hydrodynamic drag experienced by the blades. Our numerical approach [1], utilizing the reactive force model, successfully reproduces flutter phenomena. In contrast, the traditional Morison’s equation fails to trigger flutter. In the static regime where flutter does not occur, the bulk drag coefficients calibrated from experiments in steady and unsteady flows can be unified through an effective Cauchy number, allowing for the use of analytical models developed for steady flows in unsteady flows. In the flutter regime, using the bulk drag coefficient from steady flows underestimates the drag load in oscillatory flow.
This paper models the large periodic plate structure as Kirchhoff-Love plates and introduces a novel implementation of asymptotic homogenization (NIAH) to enable an efficient calculation of the structural stiffness. Compared to full finite element models, applying NIAH to a unit-cell model greatly reduces computational costs. This paper systematically presents the derivation and finite element formulation of asymptotic homogenization (AH), and the development of NIAH. Benchmark cases, including solid, thin-walled, multi-material plates, and a plate with octagonal holes, are used to validate the NIAH implementation. A series of representative fish cage designs are analyzed to investigate the influence of pontoon components, structural layouts, and material distribution on structural stiffness. To ensure the reliability of the calculations, the choice of unit-cell model and the sensitivity of the results to mesh density and unit-cell size are also discussed.