This paper presents a detailed risk assessment framework tailored for retrofitting ship structures towards eco-friendliness. Addressing a critical gap in current research, it proposes a comprehensive strategy integrating technical, environmental, economic, and regulatory considerations. The framework, grounded in the Failure Mode, Effects, and Criticality Analysis (FMECA) approach, adeptly combines quantitative and qualitative methodologies to assess the feasibility and impact of retrofitting technologies. A case study on ferry electrification, highlighting options like fully electric and hybrid propulsion systems, illustrates the application of this framework. Fully Electric Systems pose challenges such as ensuring ample battery capacity and establishing the requisite charging infrastructure, despite offering significant emission reductions. Hybrid systems present a flexible alternative, balancing electric operation with conventional fuel to reduce emissions without compromising range. This study emphasizes a holistic risk mitigation strategy, aligning advanced technological applications with environmental and economic viability within a strict regulatory context. It advocates for specific risk control measures that refine retrofitting practices, guiding the maritime industry towards a more sustainable future within an evolving technological and regulatory landscape.
Wind-assisted ship propulsion (WASP) technology seems to be a promising solution toward accelerating the shipping industry’s decarbonization efforts as it uses wind to replace part of the propulsive power generated from fossil fuels. This article discusses the status quo of the WASP technological growth within the maritime transport sector by means of a secondary data review analysis, presents the potential fuel-saving implications, and identifies key factors that shape the operational efficiency of the technology. The analysis reveals three key considerations. Firstly, despite the existing limited number of WASP installations, there is a promising trend of diffusion of the technology within the industry. Secondly, companies can achieve fuel savings, which vary depending on the technology installed. Thirdly, these bunker savings are influenced by environmental, on-board, and commercial factors, which presents both opportunities and challenges to decision makers.