The BBNJ Agreement will affect legal frameworks for the conservation of marine biological diversity in various regions of the world ocean and the marine Arctic is no exception. As biological diversity in the marine Arctic is particularly vulnerable, the implications of the BBNJ Agreement for the conservation of biological diversity in the marine Arctic deserves serious consideration. Of particular note is the procedure for an environmental impact assessment (EIA). Given that damage to the environment may be irreversible, it is a prerequisite to conduct an EIA before authorizing planned activities, with a view to preventing environmental harm. An EIA constitutes a crucial element in the conservation of the marine environment, including biological diversity. Hence, this article examines the potential implications of the procedure for an EIA as set out under the BBNJ Agreement for the conservation of biological diversity in the marine Arctic beyond national jurisdiction.
The literature on climate change in the maritime transport industry has grown rapidly in the last few years. Yet as the research agenda has progressed, scientific debates have become more isolated and fragmented, making it difficult to translate new findings into broader policy debates. This article draws on problematization methodology to help organize the scientific debate on maritime emissions and to identify analytical gaps and challenges. We argue that scholars investigate shipping's emission problem from four distinct analytical perspectives— (1) international laws and regulations, (2) markets and economics, (3) engineering and technology, and (4) authority and legitimacy. Each of these perspectives problematizes maritime emissions in specific ways, leading to different policies and strategies to address the problem. We call for better integrating these four literatures and highlight three crosscutting areas and problems for future research. First, developing institutions that facilitate market and engineering solutions; second, integrating climate mitigation and adaptation research; and third, focusing on justice concerns to ensure an equitable green transition in the maritime industry.
The design of emission control areas (ECAs), including ECA width and sulfur limits, plays a central role in reducing sulfur emissions from shipping. To promote sustainable shipping, we investigate an ECA design problem that considers the response of liner shipping companies to ECA designs. We propose a mathematical programming model from the regulator’s perspective to optimize the ECA width and sulfur limit, with the aim of minimizing the total sulfur emissions. Embedded within this regulator’s model, we develop an internal model from the shipping liner’s perspective to determine the detoured voyage, sailing speed, and cargo transport volume with the aim of maximizing the liner’s profit. Then, we develop a tailored hybrid algorithm to solve the proposed models based on the variable neighborhood search meta-heuristic and a proposition. We validate the effectiveness of the proposed methodology through extensive numerical experiments and conduct sensitivity analyses to investigate the effect of important ECA design parameters on the final performance. The proposed methodology is then extended to incorporate heterogeneous settings for sulfur limits, which can help regulators to improve ECA design in the future.
Maritime transportation is an essential pillar of modern societies, serving as the backbone of global trade. The shipping industry relies heavily on fossil fuels, significantly impacting the environment and contributing to climate change. The International Maritime Organization (IMO) has introduced a strategy to reduce greenhouse gas emissions from international shipping and decarbonize the industry to combat this issue. This strategy aims to accomplish energy efficiency gains, transition to alternative fuels, and implement market-based measures.
Various energy efficiency indicators are in use to monitor the performance of ships, both from technical and operational perspectives. Building upon previous research that identified shortcomings in these indicators, this thesis investigates alternative methods of assessing the energy efficiency of ships. Emphasizing the importance of a benchmarking tool, the primary objective of this thesis is to contribute to the policy debate on reducing emissions in international shipping by developing a comprehensive carbon intensity indicator.
The thesis comprises four articles addressing various approaches to monitoring ship carbon emissions. The first article focuses on the influence of weather conditions on a ship’s energy efficiency, thereby contributing to the ongoing discussion on weather correction factors. Using model-based machine learning techniques, this article illustrates the diverse sea conditions encountered, their impact on energy efficiency, and the necessity of accounting for this diversity through multiple correction factors.
The second and third articles introduce and develop the concept of operational cycles for maritime transportation, drawing inspiration from the driving cycles employed in the automotive industry. The second article describes the process of generating operational cycles for the maritime sector as a novel concept. It validates this concept using real-world data obtained from a fleet of container ships. Building upon this foundation, the third article extends the concept by elaborating more comprehensive cycles that better represent real-world indicators.
The fourth article explores voluntary reporting frameworks in the shipping industry. It focuses on the Clean Cargo case and investigates the needs and interests of its members regarding this private initiative and related reporting framework. The discussion revolves around the role of these voluntary frameworks as complementary approaches to regulatory frameworks towards maritime decarbonization.
Based on the methodology developments and analysis through the thesis, the following key findings and recommendations are presented:
• The weather impact on ships’ fuel consumption prevents an accurate and real assessment of ships’ efficiency. Multiple weather correction factors for energy efficiency indicators introduce a novel approach.
• Inspired by the automotive industry, maritime operational cycles improve the assessment of technical and operational aspects of a ship’s energy efficiency. The cycles reduce the variability inherent to energy
efficiency indicators and are suitable as benchmarking tools.
• Although the IMO regulatory framework remains at the core of the maritime decarbonization strategy, regional regulatory frameworks and private initiatives have demonstrated their capacity to enhance industry
practices and facilitate regulatory developments.
This thesis contributes to enhancing carbon emissions monitoring in the maritime industry by introducing new methodologies and assessments. The resulting proposals are designed to enrich ongoing discussions within the IMO and complement the existing regulatory frameworks.
The decarbonisation of shipping has become a high priority on the environmental and political agenda. The prospect of implementing an Emissions Trading System (ETS) for shipping has come to prominence as a proposed mechanism for speeding up the decarbonisation of the industry, with the EU taking proactive action to include shipping within the EU ETS by 2023. This paper analyses and provides a qualitative review of the historical development of the discussions and actions taken at both global level (by the International Maritime Organization (IMO)) and at regional level within the EU. A SWOT analysis of the potential implementation of an ETS for shipping is then presented. The paper concludes that an ETS for shipping can incentivise greater investment in, and deployment of, green technologies that will have the effect of reducing the carbon footprint of the shipping industry. However, the speed and significance of this effect will depend upon the specific shipping market segment and the relative stage in shipping market cycles over time. It is further concluded that despite the imminent unilateral introduction of shipping into the EU ETS, it is important that the IMO continues its work to develop a global ETS that promotes a ‘level playing field’ for competition within the sector and eliminates the risk of carbon leakage.
Ammonia-fueled operation of solid oxide fuel cells is a promising alternative to their hydrogen-fueled operation. However, high ammonia decomposition rates at elevated operating temperatures of the solid oxide cells lead to a significant temperature drop at the stack inlet, causing increased thermal stresses. A multi-scale model is used in this study to investigate stack performance under direct feed and external pre-cracking of ammonia. Additionally, the effects of co- and counter-flow configurations, gas inflow temperatures, current density, and air flow rate on the stack performance under direct ammonia feed are examined. The simulation results show that for gas inlet temperatures above 750 °C, the power densities with direct feed and external cracking of ammonia differ by less than 5%. Moreover, it is indicated that the thermal stresses are lowest for the co-flow case, which decrease with decreasing gas inlet temperature and current density and with increasing air flow. Finally, this study shows that under practically applicable operating conditions, the risk of mechanical failure of the cells under direct ammonia feed operation is small.
Improving the power density of solid oxide fuel cell stacks would significantly enhance this technology for transportation. Using a monolithic structure to downsize the stack dimension offers a key to elevate the power density of solid oxide fuel cell stacks. This innovative design is promising but manufacturing is a challenge. The monolith is co-sintered in one firing step, and the gas channels are formed by burning off sacrificial organic materials. Structure distortion or fracture was observed in post-mortem investigations. In this work a multiscale, multiphysics modelling approach is proposed to describe and resolve this challenge in the debinding process occurring in a monolithic stack, i.e. the burning of organics and transportation of gases through the gradually opening microstructure, as well as the pressure build-up in the microstructure due to gas development. Simulation results show that a prominent pressure peak is experienced in the stack when a plasticiser (polyethylene glycol) and a pore-former (polymethyl methacrylate) are decomposed simultaneously. To reduce the high pressures, we investigate two possible strategies: (i) changing the mixture of organic additives; (ii) modifying the debinding temperature profile. Three tapes with different pore-formers are prepared, and the generated pressures during debinding of the three stacks are compared. The corresponding stack shapes after debinding are recorded. Numerical investigations show a good agreement with the post-mortem observations. By changing the composition of organics the distortion or fracturing of the stack can be avoided. Furthermore, to facilitate stack manufacturing, the high pressures can also be reduced by adjusting the heating rates and dwell temperatures of debinding. By using the new temperature profile suggested by the simulation study, the duration of debinding can also be reduced.
This paper introduces a resilience assessment methodology for sustainable autonomous maritime transport networks developed by the European project entitled “Advanced, Efficient, and Green Intermodal Systems” (AEGIS). This problem being addressed in this paper concerns the investigation of threats, incidents, and risks in an autonomous- and sustainable shipping context, and the research question is the development of both preventive measures and reactive actions to maintain an acceptable level of operational constraints. The paper's methodology aids in designing sustainable logistics systems for highly automated waterborne transport, identifying threats and barriers to mitigate event consequences, thereby facilitating a seamless green transition. To examine the usability, this methodology is applied in a case study for cargo transportation, where we in this paper consider the maritime corridor between Trondheim and Rotterdam. The findings encompass the spectrum of possible actions to prevent and mitigate unwanted events and enhance resilience and flexibility. This can be used as a tool to respond to unwanted threats, enhance safety, and introduce new strategies. These results are deemed important as resilience is one of the prerequisites for the development of a sustainable transport system. This is true both for the companies that are engaged in the operation of such systems and for policymakers.
Scrubbers have gained importance in the maritime sector following recent tightening of the emission legislation regarding sulphur. In this work, a model framework based on an Eulerian-Eulerian multiphase model for a packed bed marine scrubber has been developed. The framework account for both dispersed droplets and a packed bed, where sub-models for interfacial forces and heat- and mass transfer are applied for the respective regions. Additionally, a chemistry model and boundary conditions for the nozzles injecting seawater into the scrubber are also implemented. The model framework is calibrated using data from an ocean-going vessel, where the model predictions were within 3% of the measured pressure loss while the discrepancy in the gas and liquid temperatures were between 0.5% and 3.5%. The sulphur concentration predicted by the model varies between − 24% and 25%. However, the concentrations were within 5 ppm of the measured values for all but a single data set.
The “Initial IMO Strategy” was adopted in the 72nd session of the Marine Environment Protection Committee (MEPC 72) of the International Maritime Organization (IMO) in April 2018. It has set, among other things, ambitious targets to reduce greenhouse gas (GHG) emissions from ships, and purports to express a strong political will to phase them out as soon as possible. The most ambitious of these targets is to reduce GHG emissions by 2050 at least 50% vis-à-vis 2008 levels, and there is also an intermediate target to reduce CO2 emissions per transport work by 2030 at least 40%, again vis-à-vis 2008 levels. More than three years since the adoption of the Initial IMO Strategy, this chapter takes stock at the status of shipping decarbonisation and attempts to assess prospects for the future. Obstacles towards achieving the IMO targets are identified and discussed.