Ship designers face increasing pressure to comply with global emission reduction ambitions. Alternative fuels, potentially derived from bio-feedstock or renewable electricity, provide promising solutions to this problem. The main challenge is to identify a suitable ship power system, given not only uncertain emission requirements but also uncertain fuel and carbon emission prices. We develop a two-stage stochastic optimization model that explicitly considers uncertain fuel and carbon emission prices, as well as potential retrofits along the lifetime. The bi-objective setup of the model shows how the choice of optimal power system changes with reduced emission levels. Methanol and LNG configurations appear to be relatively robust initial choices due to their ability to run on fuel derived from different feedstocks, and their better retrofittability towards ammonia or hydrogen. From a policy perspective, our model provides insight into the effect of the different types of carbon pricing mechanisms on a shipowner's decisions.
The shipping sector's rising greenhouse gas emissions are often considered “hard-to-abate”. Some ship-owners have recently adopted or started to consider the adoption of alternative fuels, but systematic studies of this are still lacking. We address this gap by studying how ship-owners differ in both actual and intended adoption of alternative fuels. We analyze data from a unique survey with 281 ship-owners in Norway, a major ship-owning country and center for maritime technology development, with descriptive statistics and analysis of variance. We find early adopters among large and established ship-owners in offshore, international cargo and domestic passenger shipping segments, which are often subjected to specific contractual demands for alternative fuel adoption. Laggards were typically small and young ship-owners operating in shipping segments where demands for alternative fuel adoption are weak. Our findings also suggest that firms' business strategy and financial and knowledge resources may have relevance for ship-owner's adoption of alternative fuels. Our study has implications for national and international policymaking, highlighting for example how contracting mechanisms can be an effective tool in incentivizing the adoption of alternative fuels.
I this video, Associate Professor Anders Ivarsson (DTU Mechanical Engineering) present the current status of their projects and experimental capabilities in the field of green marine fuels (lignin fuel, ammonia, and dimethyl ether) in their combustion engine laboratory.
The session was developed in collaboration with MARLOG.
The maritime sector is a key asset for the world economy, but its environmental impact represents a major concern. The sector is primarily supplied with Heavy Fuel Oil, which results in high pollutant emissions. The sector has set targets for deacrbonisation, and alternative fuels have been identified as a short-to medium-term option. The paper addresses the complexity related to the activities of the maritime industry, and discusses the possible contribution of alternative fuels. A sector segmentation is proposed to define the consumption of each sub-segment, so to compare it with the current alternative fuel availability at European level. The paper shows that costs and GHG savings are fundamental enablers for the uptake of alternative fuels, but other aspects are also crucial: technical maturity, safety regulation, expertise needed, etc. The demand for alternative fuels has to be supported by an existing, reliable infrastructure, and this is not yet the case for many solutions (i.e. electricity, hydrogen or methanol). Various options are already available for maritime sector, but the future mix of fuels used will depend on technology improvements, availability, costs and the real potential for GHG emissions reduction.