Keyword: Arctic


Societal impact of climate change and new Arctic shipping routes on shipping in Greenland

Jakobsen, Uffe

According to the narratives transmitted through media and political discourse, climate change reduces the ice coverage in the Arctic and enhances shipping and other forms of maritime activities. Especially, expectations of an increasing level of transit shipping between Asian, especially Chinese, ports and ports in Europe and North America is dominant. Evidence, however, tells that the numbers of transit shipping through the Arctic Ocean are very limited, and dominated by European shipping companies. For Greenland, political expectations have also been high, since Greenland has been seen as "strategically" situated in relation to new shipping routes in the Arctic, But, again, the actual development has been moderate and not related to international transits but conditions in Greenland itself.

Institut d'Études de Géopolitique Appliquée / 2021
Go to book

Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region

Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen

International initiatives have successfully brought down the emissions, and hence also the related negative impacts on environment and human health, from shipping in Emission Control Areas (ECAs). However, the question remains as to whether increased shipping in the future will counteract these emission reductions. The overall goal of this study is to provide an up-to-date view on future ship emissions and provide a holistic view on atmospheric pollutants and their contribution to air quality in the Nordic (and Arctic) area. The first step has been to set up new and detailed scenarios for the potential developments in global shipping emissions, including different regulations and new routes in the Arctic. The scenarios include a Baseline scenario and two additional SOx Emission Control Areas (SE-CAs) and heavy fuel oil (HFO) ban scenarios. All three scenarios are calculated in two variants involving Business-AsUsual (BAU) and High-Growth (HiG) traffic scenarios. Additionally a Polar route scenario is included with new ship traffic routes in the future Arctic with less sea ice. This has been combined with existing Current Legislation scenarios for the land-based emissions (ECLIPSE V5a) and used as input for two Nordic chemistry transport models (DEHM and MATCH). Thereby, the current (2015) and future (2030, 2050) air pollution levels and the contribution from shipping have been simulated for the Nordic and Arctic areas. Population exposure and the number of premature deaths attributable to air pollution in the Nordic area have thereafter been assessed by using the health assessment model EVA (Economic Valuation of Air pollution). It is estimated that within the Nordic region approximately 9900 persons died prematurely due to air pollution in 2015 (corresponding to approximately 37 premature deaths for every 100 000 inhabitants). When including the projected development in both shipping and land-based emissions, this number is estimated to decrease to approximately 7900 in 2050. Shipping alone is associated with about 850 premature deaths during presentday conditions (as a mean over the two models), decreasing to approximately 600 cases in the 2050 BAU scenario. Introducing a HFO ban has the potential to lower the number of cases associated with emissions from shipping to approximately 550 in 2050, while the SECA scenario has a smaller impact. The "worst-case" scenario of no additional regulation of shipping emissions combined with a high growth in the shipping traffic will, on the other hand, lead to a small increase in the relative impact of shipping, and the number of premature deaths related to shipping is in that scenario projected to be around 900 in 2050. This scenario also leads to increased deposition of nitrogen and black carbon in the Arctic, with potential impacts on environment and climate.

Atmospheric Chemistry and Physics / 2021
Go to paper

Changing Paradigms in the Law of the Sea and the Marine Arctic

Tanaka, Yoshifumi

The existence of a sense of common or community interests is a prerequisite to establishing an order in a society, national or international. In this connection, it is notable that the protection of community interests is increasingly important in international law and the law of the sea is no exception. The increasing need for protecting community interests necessitates a new paradigm in the law of the sea. The legal issues regarding the marine Arctic should also be considered in the context of changing paradigms in the law of the sea. Thus this article seeks to overview principal issues of the international law governing the marine Arctic from the viewpoints of a dual paradigm, that is, the law of divided oceans (paradigm I) and the law of our common ocean (paradigm II).

The International Journal of Marine and Coastal Law, 35(3) / 2020
Go to paper

Arctic Port Development

Julia Pahl*, Brooks A. Kaiser

Melting Arctic sea ice, shore ice, and permafrost are changing costs and benefits to transport routes between Atlantic and Pacific oceans, and more generally, for maritime economic activity in the Arctic. We investigate the potential for development of Arctic ports from a logistics (demand) and an infrastructural (supply) point of view that directly incorporates local concerns. This approach broadens the scope of the discussion from existing analyses that focus primarily on the ways in which global forces, exerted through resource extraction or trans-polar shipping, impact the Arctic.

Springer Nature / 2018
Go to paper

Navigation safety and risk assessment challenges in the High North

Marchenko, N.A.; Borch, O.J.; Andreassen, N.; Kuznetsova, S.Y.; Ingimundarson, V.; Jakobsen, Uffe.

The sea ice in the Arctic has shrunk significantly in the last decades. Partly as a result, the transport pattern has changed with more traffic in remote areas. This change may increase the risk of accidents. The critical factors are harsh weather, ice conditions, remoteness and vulnerability. In this paper we look into the risks of accidents in the Atlantic Arctic based on previous ship accidents and the changes in maritime activity. The risk has to be assessed to ensure a proper level of response in emergency situations. As accidents are rare, there are limited statistics available for Arctic marine accidents. Therefore, in this study a mostly qualitative analysis and expert judgement is the basis for the risk assessments. Implications for the emergency preparedness system of the region are discussed. The consequences of incidents depend on the incident type, scale and location,

Book chapter in in the High North. in A Weintrit (ed.), Marine Navigation and Safety of Sea Transportation / 2017
Go to book

Emission inventories for ships in the arctic based on satellite sampled AIS data

Winther, Morten; Christensen, Jesper H.; Plejdrup, Marlene S.; Ravn, Erik S.; Eriksson, Ómar F.; Kristensen, Hans Otto

This paper presents a detailed BC, NOx and SO2 emission inventory for ships in the Arctic in 2012 based on satellite AIS data, ship engine power functions and technology stratified emission factors. Emission projections are presented for the years 2020, 2030 and 2050. Furthermore, the BC, SO2 and O3 concentrations and the deposition of BC are calculated for 2012 and for two arctic shipping scenarios – with or without arctic diversion routes due to a possible polar sea ice extent in the future.

In 2012, the largest shares of Arctic ships emissions are calculated for fishing ships (45% for BC, 38% for NOx, 23% for SO2) followed by passenger ships (20%, 17%, 25%), tankers (9%, 13%, 15%), general cargo (8%, 11%, 12%) and container ships (5%, 7%, 8%). In 2050, without arctic diversion routes, the total emissions of BC, NOx and SO2 are expected to change by +16%, −32% and −63%, respectively, compared to 2012. The results for fishing ships are the least certain, caused by a less precise engine power – sailing speed relation.

The calculated BC, SO2, and O3 surface concentrations and BC deposition contributions from ships are low as a mean for the whole Arctic in 2012, but locally BC additional contributions reach up to 20% around Iceland, and high additional contributions (100–300%) are calculated in some sea areas for SO2. In 2050, the arctic diversion routes highly influence the calculated surface concentrations and the deposition of BC in the Arctic. During summertime navigation contributions become very visible for BC (>80%) and SO2 (>1000%) along the arctic diversion routes, while the O3 (>10%) and BC deposition (>5%) additional contributions, respectively, get highest over the ocean east of Greenland and in the High Arctic.

The geospatial ship type specific emission results presented in this paper have increased the accuracy of the emission inventories for ships in the Arctic. The methodology can be used to estimate shipping emissions in other regions of the world, and hence may serve as an input for other researchers and policy makers working in this field.

Atmospheric Environment Volume 91, July 2014 / 2014
Go to paper