Knowledge

Keyword: machine learning

paper

Monitoring hydrodynamic vessel performance by incremental machine learning using in-service data

Malte Mittendorf, Ulrik Dam Nielsen, Ditte Gundermann

An adaptive machine learning framework is established for an implicit determination of the performance degradation of a ship due to marine growth, i.e., biofouling. The framework is applied in a case study considering telemetry data of a cruise ship operating predominantly in the Caribbean Sea. The dataset encompasses seven years including three dry-docking intervals and several in-water cleaning events. The COVID-19 period receives special focus due to the drastic change in the operational profile. A main outcome of the study is a comparison of the derived performance estimate to the corresponding results of the industry standard ISO 19030. Additional aspects of the present study include the use of special regularization techniques for incremental machine learning and the increase of transparency through the implementation of prediction intervals indicating model uncertainty. Overall, it is found that the developed machine learning framework shows good agreement with the industry standard underlining its plausibility.

Ship Technology Research / 2024
Go to paper
paper

Identifying Key Issues in Integration of Autonomous Ships in Container Ports: A Machine-Learning-Based Systematic Literature Review

Enna Hirata, Annette Skovsted Hansen

Background: Autonomous ships have the potential to increase operational efficiency and reduce carbon footprints through technology and innovation. However, there is no comprehensive literature review of all the different types of papers related to autonomous ships, especially with regard to their integration with ports. This paper takes a systematic review approach to extract and summarize the main topics related to autonomous ships in the fields of container shipping and port management. Methods: A machine learning method is used to extract the main topics from more than 2000 journal publications indexed in WoS and Scopus. Results: The research findings highlight key issues related to technology, cybersecurity, data governance, regulations, and legal frameworks, providing a different perspective compared to human manual reviews of papers. Conclusions: Our search results confirm several recommendations. First, from a technological perspective, it is advised to increase support for the research and development of autonomous underwater vehicles and unmanned aerial vehicles, establish safety standards, mandate testing of wave model evaluation systems, and promote international standardization. Second, from a cyber–physical systems perspective, efforts should be made to strengthen logistics and supply chains for autonomous ships, establish data governance protocols, enforce strict control over IoT device data, and strengthen cybersecurity measures. Third, from an environmental perspective, measures should be implemented to address the environmental impact of autonomous ships. This can be achieved by promoting international agreements from a global societal standpoint and clarifying the legal framework regarding liability in the event of accidents.

MDPI / 2024
Go to paper
paper

Developing correction factors for weather’s influence on the energy efficiency indicators of container ships using model-based machine learning

Amandine Godet, Lukas Jonathan Michael Wallner, George Panagakos, Michael Bruhn Barfod*

The International Maritime Organization employs technical and operational indicators to assess ship energy efficiency. Weather conditions significantly impact ship fuel consumption during voyages, necessitating the consideration of this influence in energy efficiency calculations. This study aims to design models for estimating the impact of weather components on fuel consumption and develop correction factors to cope with the weather effect on the fuel consumption of container ships for different sea states. Using model-based machine learning, the study analyzes noon reports and hindcasted weather data from two sister container ships. It quantifies weather-induced fuel consumption across various sea states, ranging from 2% to 20%, with an average of 7%–13% depending on the model used. Correction factors specific to each sea state are derived, and different approaches for their integration into energy efficiency indicators are proposed. This study advocates tailored weather correction factors for energy efficiency metrics tied to specific sea states, emphasizing the need for standardized weather impact assessments. Prior to any formal policy application, future work is needed to address the limitations of the present study and extend this approach to various ship types and sizes and different geographical regions.

Ocean and Coastal Management / 2024
Go to paper
paper

Uncertainty-associated directional wave spectrum estimation from wave-induced ship responses using Machine Learning methods

Ulrik D. Nielsen, Kazuma Iwase, Raphaël E.G. Mounet, Gaute Storhaug

This paper presents an assessment of three methods used for sea state estimation via the wave buoy analogy, where measured ship responses are processed. The three methods all rely on Machine Learning exclusively but they have different output; Method 1 provides bulk parameters, Method 2 yields a point wave spectrum and the wave direction, while Method 3 gives the directional wave spectrum in non-parametric form. The assessment is made using full-scale data from an in-service container ship in cross-Atlantic service. Training and testing of the methods are made using data from a wave radar, and the three methods perform well. An uncertainty measure, equivalently, a trust level indicator, based on the variation between the post-processed outputs of the methods is proposed, and this facilitates determination of estimates with small errors; without knowing the ground truth.

Ocean Engineering / 2024
Go to paper
paper

Prediction of harbour vessel emissions based on machine learning approach

Zhong Shuo Chen, Jasmine Siu Lee Lam*, Zengqi Xiao

Harbour vessel emissions are growing concerns in the maritime industry regarding environmental sustainability. Accurate emissions prediction can stand in monitoring and addressing the issue. This study proposes a machine-learning approach using Artificial Neural Network (ANN) for predicting harbour vessel emissions. The approach shows superiority over the bottom-up method introduced by the 4th IMO GHG Study regarding prediction accuracy. Actual emissions data from onboard measurements are used for training ANN models and as references for evaluating the methods. Compared to the bottom-up method, the improvement in error reduction can be up to 30% for predicting nitrogen oxides and 54% for carbon monoxide when only using ship-related factors as input variables. By adding selected meteorological factors in the experiments, the prediction accuracy enhancement can achieve up to 48% for nitrogen oxides and 62% for carbon monoxide. The proposed ANN approach could assist relevant stakeholders in improving emissions prediction and operations optimisation.

Transportation Research Part D: Transport and Environment / 2024
Go to paper
paper

Capturing the effect of biofouling on ships by incremental machine learning

Malte Mittendorf*, Ulrik Dam Nielsen, Harry B. Bingham

Performance data from ships is subject to distributional shifts, sometimes referred to as concept drift. In this study, synthetic monitoring data is simulated for the KVLCC2, considering publicly available reference data and a semi-empirical simulation framework. Neural networks are trained to predict the required shaft power and to overcome the deterioration in model accuracy due to concept drift, three methods of incremental learning are applied and compared: (1) Layer freezing, (2) regularization, and (3) elastic weight consolidation. Furthermore, an implicit methodology for quantifying the changing hull and propeller performance is presented. In addition, a generic feature engineering framework is used for eliminating insignificant features. In two investigations, sudden and incremental concept drift scenarios are examined, and the effect of different uncertainty categories on model performance is studied in parallel based on three different datasets. As a main finding, it is confirmed that data quality is of great importance for accurate machine learning-driven performance monitoring — even in simulated environments. Furthermore, the study shows that freezing layers during incremental learning proves to be most robust and accurate, but it will be part of future work to examine this on actual sensor data.

Applied Ocean Research / 2023
Go to paper
paper

Deriving spatial wave data from a network of buoys and ships

Raphaël E.G. Mounet*, Jiaxin Chen, Ulrik D. Nielsen, Astrid H. Brodtkorb, Ajit C. Pillai, Ian G.C. Ashton, Edward C.C. Steele

The real-time provision of high-quality estimates of the ocean wave parameters at appropriate spatial resolutions are essential for the sustainable operations of marine structures. Machine learning affords considerable opportunity for providing additional value from sensor networks, fusing metocean data collected by various platforms. Exploiting the ship-as-a-wave-buoy concept, this article proposes the integration of vessel-based observations into a wave-nowcasting framework. Surrogate models are trained using a high-fidelity physics-based nearshore wave model to learn the spatial correlations between grid points within a computational domain. The performance of these different models are evaluated in a case study to assess how well wave parameters estimated through the spectral analysis of ship motions can perform as inputs to the surrogate system, to replace or complement traditional wave buoy measurements. The benchmark study identifies the advantages and limitations inherent in the methodology incorporating ship-based wave estimates to improve the reliability and availability of regional sea state information.

Ocean Engineering / 2023
Go to paper
paper

Data-driven condition monitoring of two-stroke marine diesel engine piston rings with machine learning

Ioannis Asimakopoulos, Luis David Avendaño-Valencia, Marie Lützen, Niels Gorm Maly Rytter

Maintaining the condition of a vessel and its equipment guarantees the scheduled completion of voyages and the safety of the crew.

This paper presents condition monitoring techniques for early detection of faults related to piston rings in remote cylinders of two-stroke marine diesel engines. Operational sensor data from the main engine of a container ship are provided by a shipping company.

A graphical approach complimented by correlation heatmaps and feature importance from gradient boosting trees are used for feature selection. Support Vector Machine, Random Forest and Extreme Gradient Boosting Trees are tested for residual generation from the nominal behavior.

The residual time series gives a good indication of the degradation of the system and can be used for alarm raising under strict rules. It is proven that the proposed method could alert the engine crew of a change in the condition of the piston rings much earlier than existing methods.

Ships and Offshore Structures / 2023
Go to paper
paper

Monocular Based Navigation System for Autonomous Ground Robots Using Multiple Deep Learning Models

Zakariae Machkour, Daniel Ortiz Arroyo, Petar Durdevic

Abstract: In recent years, the development of ground robots with human-like perception capabilities has led to the use of multiple sensors, including cameras, lidars, and radars, along with deep learning techniques for detecting and recognizing objects and estimating distances. This paper proposes a computer vision-based navigation system that integrates object detection, segmentation, and monocular depth estimation using deep neural networks to identify predefined target objects and navigate towards them with a single monocular camera as a sensor. Our experiments include different sensitivity analyses to evaluate the impact of monocular cues on distance estimation. We show that this system can provide a ground robot with the perception capabilities needed for autonomous navigation in unknown indoor environments without the need for prior mapping or external positioning systems. This technique provides an efficient and cost-effective means of navigation, overcoming the limitations of other navigation techniques such as GPS-based and SLAM-based navigation. Graphical Abstract: [Figure not available: see fulltext.]

International Journal of Computational Intelligence Systems / 2023
Go to paper
paper

Machine Learning Enhancement of Manoeuvring Prediction for Ship Digital Twin using Full-scale Recordings

Rasmus Esbjørn Nielsen, Dimitrios Papageorgiou, Lazaros Nalpantidis, Bugge T. Jensen, Mogens Blanke

Digital Twins have much attention in the shipping industry, attempting to support all phases of a vessel’s life cycle. With several tools appearing in Digital Twin software suites, high-quality manoeuvring and performance prediction remain cornerstones. Propulsion efficiency is in focus while in service. Simulator-based training is in focus to ensure safety of manoeuvring in confined waters and harbours. Prediction of ships’ velocity and turn rate are essential for correct look and feel during training, but phenomena like dynamic inflow to propellers, bank and shallow water effects limit simulators’ accuracy, and master mariners often comment that simulations could be in better agreement with actual behaviours of their vessel. This paper focuses on digital twin enhancements to better match reality. Using data logged during in-service operation, we first consider a system identification perspective, employing a first-principles model structure. Showing that a complete firstprinciples model is not identifiable under the excitation met in service, we employ a Recurrent Neural Network to predict deviations between measured velocities and the model output. The outcome is a hybrid of a first-principles model with a machine learning generic approximator add-on. The paper demonstrates significant improvements in prediction accuracy of both in-harbour manoeuvring and shallow water passage conditions.

Ocean Engineering / 2022
Go to paper