Wind propulsion systems (WPS) for commercial ships can be a key ingredient to achieving the IMO green targets. Most WPS installations will operate in conjunction with propellers and marine engines in a hybrid mode, which will affect their performance. The present paper presents the development of a generic, fast, and easy tool to predict the propeller and engine performance variation, along with the cost, as a function of the wind power installed in two operation conditions: fixed ship speed and constant shaft speed. Specific focus is directed toward showing generic trends and trade-offs that inform economic decision-making. To this end, a key feature of the presented work is the ability to assess the cost–benefit of both controllable pitch propellers and fixed pitch propellers (CPPs and FPPs). This provides advice on when, in terms of WPS installation size, it is worthwhile to install which kind of propeller. CPPs are found to be more suitable for newly built wind-powered ships (>70% wind power), while a conventional FPP is satisfactory for wind-assisted ships (<70% wind power) and retrofitted installations. The results for a 91,373 GT bulk carrier showed that a WPS unloads the propeller and the engine, which leads to an increase in the propulsive efficiency and a detrimental rise of the engine specific fuel oil consumption. However, propeller gains are found to be greater than engine losses, which result in extra savings. Thus, not only does a WPS save fuel and corresponding pollutant emissions, but it also increases the entire propulsive efficiency.
As a reaction to an increasing concern with the decreasing of standards in shipping during the 1970s and 1980s the International Maritime Organization adopted the ISM Code, which became mandatory in 1998. This study revisits the ISM Code, firstly exploring the genesis of the code at the international level, and then its operationalization at the national and local level. Based on a three-step case study, the interplay between the essence of the ISM Code and praxis onboard is explored. The study explores the distortion and erosion of the essence of the ISM Code when implemented on the national level in Danish law (step one) and by two Danishbased companies (step two) and finally investigates the local effect of the code as it is displayed onboard (step three).
The study is conducted as an applied socio-legal study; thus, it adopts both an internal (doctrinal) and an external (empirical) approach. It also combines the topdown and bottom-up perspective, consequently applying different methods to fit the content of the different levels examined, while maintaining a qualitative approach.
The research design is inspired by the hermeneutic circle. The first circle (Part I the international level) explores the genesis of the ISM Code, aim to explore the causal explanation for and to determine the essence of the ISM Code. The ‘essence’ is constituted by the ‘principles’ that the regulators intended to be essential to achieve ‘the purpose’. With Santos’s cartographic metaphor as a theoretical analytical framework combined with legal dogmatic method, the first part concentrates on small-scale legality (the international level). The second circle (Part II) is related to medium-scale legality (the national/transnational level). Part II explore the operationalisation of the ISM Code as it is implemented in Danish law, applying legal dogmatic method, combined with analyses of written formal communication to identify the inter-legality that distort the principles when implemented at a national level (step one and two). The third circle (Part III) relates to large-scale legality, applying Goffman’s theoretical framework to analyse the micro level, that constitute the onboard praxis. Praxis is compared with legislation, v revealing a frontstage behaviour that is compliant with regulation and documented by checklists, while in fact praxis deviate, ‘to make it work’ the crew exhibits what Goffman denoted a backstage behaviour.
The ISM Code introduces meta-regulation as a regulatory mechanism. Metaregulation is linked to Santos’s concept of globalization and governance matrix; the study applies Parker’s definition of meta-regulation and the triple loop to study the concept.
The study identifies three principles that constitute the essence of the ISM Code; (1) to establish a genuine link between the company and the flag State; (2) to ensure that the company becomes responsible for the ship’s operation; and (3) to empower the master, ensuring her or his authority. The analyses proved that each of the three principals were distorted at respectively meso and micro level, and that even though the intent was to promote good ship management, in reality it has provided companies the opportunity strut in borrowed plumes.
The International Maritime Organization (IMO) has recently adopted short-term measures introducing technical standards for existing ships and a labeling system reflecting their operational carbon intensity. This paper investigates the relevant techno-economic implications from a shipowner's perspective and estimates the effect of six compliance options on six sample containerships. The study applies a new evidence-based bottom-up approach, and the results show that compliance, when possible, is not straightforward and costly. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times (up to 793.92 h/year), which can be prohibitive. The option favors older ships with oversized engines as its effectiveness is mainly determined by the main engine load profile. In general, the effectiveness of the measures is not without limits, particularly concerning older ships and those that have already installed several options. Solutions such as market-based measures and alternative fuels, classed by IMO as medium- and long-term measures, must be considered soon.
Global warming and, correspondingly, reducing CO2 emissions is one of the most challenging tasks the world faces today. The maritime industry contributed to 2.89% of the global anthropogenic CO2 emissions. To decrease this share, the International Maritime Organization (IMO) defined, among others, the goal to reduce the carbon intensity of international shipping by 40% until 2030. In this context, the short-term measures recently adopted, in the form of a technical standard (Energy Efficiency Existing Ship Index, EEXI) and a rating scheme based on an operational indicator (Carbon Intensity Indicator, CII), mark a crucial step to achieving the mentioned goal. In addition, the EU Commission has recently introduced the FuelEU Maritime Initiative limiting the annual greenhouse gas (GHG) intensity of a ship’s energy use incorporating a reduction occurring in a five-year rhythm between 2025 and 2050. The paper investigates the practical options availed to existing containerships of different sizes and technological vintages for meeting the specific EEXI, CII, and GHG intensity reduction requirements imposed by the regulations. The investigation will be based on the actual technical and operational profiles of six sample ships and will consider a set of possible compliance options including, but not limited to, engine power limitation, waste heat recovery system, variable frequency drives, and virtual arrival. The data used originates from noon reports of existing containerships provided by a European industry leader. The ship-specific CO2 emission reduction potentials required for the impact assessment result from either literature or actual data-based calculations. Financial data is used for investigating the economic impact of the reduction requirements. Conclusions drawn include an operational advantage that pre-EEDI ships enjoy when applying engine power limitation (EPL) for EEXI compliance, the occurrence of payback periods exceeding ship lifetimes, and an estimate of the effect that onshore power supply can have on complying with the FuelEU Maritime Initiative.
The International Maritime Organization (IMO) has recently adopted short-term measures introducing technical standards for existing ships and a labeling system reflecting their operational carbon intensity. This paper investigates the relevant techno-economic implications from a shipowner's perspective and estimates the effect of six compliance options on six sample containerships. The study applies a new evidence-based bottom-up approach, and the results show that compliance, when possible, is not straightforward and costly. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times (up to 793.92 h/year), which can be prohibitive. The option favors older ships with oversized engines as its effectiveness is mainly determined by the main engine load profile. In general, the effectiveness of the measures is not without limits, particularly concerning older ships and those that have already installed several options. Solutions such as market-based measures and alternative fuels, classed by IMO as medium- and long-term measures, must be considered soon.
In this video, Professor Harilaos Psaraftis (DTU Technical University of Denmark) will outline the main decarbonization challenges.
The International Maritime Organization (IMO) adopted the so-called Initial IMO Strategy in 2018, stipulating that greenhouse gas (GHG) emissions from international shipping need to be reduced by at least 50% by 2050, and CO2 emissions per transport work are to be reduced by at least 40% by the year 2030, both compared to the 2008 levels.
At the same time, there is an elephant in the room: It is the intent of the European Commission and the European Parliament to include shipping into the EU ETS. How the elephant will be handled is not clear. In this talk we will outline the main decarbonization challenges through a focus on a RoPax case study.
The session was developed in collaboration with MARLOG.
This paper aims to conduct an updated literature survey on the Market-Based Measures (MBMs) currently being proposed by various member states and organizations at the International Maritime Organization (IMO) or by the scientific and grey literature as a cost-effective solution to reduce greenhouse gas (GHG) emissions from ships. Τhe paper collects, summarizes, and categorizes the different proposals to provide a clear understanding of the existing discussions on the field and also identifies the areas of prior investigation in order to prevent duplication and to avoid the future discussion at the IMO to start from scratch. Relevant European Union (EU) action on MBMs is also described. Furthermore, the study identifies inconsistencies, gaps in research, conflicting studies, or unanswered questions that form challenges for the implementation of any environmental policy at a global level for shipping. Finally, by providing foundational knowledge on the topic of MBMs for shipping and by exploring inadequately investigated areas, the study addresses concrete research questions that can be investigated and resolved by the scientific and shipping community
The purpose of this paper is to assess the status and prospects of the decarbonization of maritime transport. Already more than two years have passed since the landmark decision of the International Maritime Organization (IMO) in April 2018, which entailed ambitious targets to reduce greenhouse gas (GHG) emissions from ships. The paper attempts to address the following three questions: (a) where do we stand with respect to GHG emissions from ships, (b) how is the Initial IMO Strategy progressing, and (c) what should be done to move ahead? To that effect, our methodology includes commenting on some of the key issues addressed by the recently released 4th IMO GHG study, assessing progress at the IMO since 2018, and finally identifying other issues that we consider relevant and important as regards maritime GHG emissions, such as for instance the role of the European Green Deal and how this may interact with the IMO process. Even though the approach of the paper is to a significant extent qualitative, some key quantitative and modelling aspects are considered as well. On the basis of our analysis, our main conjecture is that there is not yet light at the end of the tunnel with respect to decarbonizing maritime transport.
The purpose of this chapter is to present some basics as regards the energy efficiency of ships, including related regulatory activity at the International Maritime Organization (IMO) and elsewhere. To that effect, the Energy Efficiency Design Index (EEDI) is first presented, followed by a discussion of Market Based Measures (MBMs) and the recent Initial IMO Strategy to reduce greenhouse gas (GHG) emissions from ships. The discussion includes commentary on possible pitfalls in the policy approach being followed.
The purpose of this chapter is to introduce the concept of Market Based Measures (MBMs) to reduce Green House Gas (GHG) emissions from ships, and review several distinct MBM proposals that were under consideration by the International Maritime Organization (IMO). The chapter then moves on to discuss the concept of Monitoring, Reporting and Verification (MRV) of CO2 emissions and the distinct mechanisms set up the European Union (EU) and the IMO for MRV. The reason the MBM and MRV subjects are treated in the same chapter is twofold: (a) the MRV discussion essentially started when the MBM discussion was suspended in 2013, and (b) MRV is a critical step for any eventual MBM implementation in the future.