Knowledge

Keyword: Extreme Load

paper

Vibration Suppression in Wind Turbines via a New Damping System: Characteristics and Performance Evaluation

Haonan Tian & Mohsen N. Soltani

A novel damping system is developed to address offshore wind turbine tower vibration exacerbated by global warming-induced coastal extreme weather. Through parametric optimization, it stabilizes nacelle displacement under normal loads and reduces responses in diverse wind conditions: 18.8% max bending stress reduction during gusts, 26.3% nacelle displacement mitigation under high turbulence, and 7.9% displacement standard deviation reductions in 50-year extreme winds. A Norwegian wind farm extends tower life by 44% at the tower top and 99.36% at the tower base. Under varying gust angles, it reduces nacelle displacement (4.3%) and bottom bending moment (3.2%), enhancing structural stability. These demonstrate their potential to cut maintenance costs and extend lifetime, which is crucial for offshore wind turbine development.

IEEE Transactions on Industry Applications / 2025
Go to paper
paper

Sensitivity analysis of extreme loads acting on a point-absorbing wave energy converter

Claes Eskilsson, Johannes Palm, Pär Johannesson & Guilherme Moura Paredes

There are many uncertainties associated with the estimation of extreme loads acting on a wave energy converter (WEC). In this study we perform a sensitivity analysis of extreme loads acting on the Uppsala University (UU) WEC concept. The UU WEC consists of a bottom-mounted linear generator that is connected to a surface buoy with a taut mooring line. The maximum stroke length of the linear generator is enforced by end-stop springs. Initially, a Variation Mode and Effect Analysis (VMEA) was carried out in order to identify the largest input uncertainties. The system was then modeled in the time-domain solver WEC-SIM coupled to the dynamic mooring solver Moody. A sensitivity analysis was made by generating a surrogate model based on polynomial chaos expansions, which rapidly evaluates the maximum loads on the mooring line and the end-stops. The sensitivities are ranked using the Sobol index method. We investigated two sea states using equivalent regular waves (ERW) and irregular wave (IRW) trains. We found that the ERW approach significantly underestimates the maximum loads. Interestingly, the ERW predicted wave height and period as the most important parameters for the maximum mooring tension, whereas the tension in IRW was most sensitive to the drag coefficient of the surface buoy. The end-stop loads were most sensitive to the PTO damping coefficient.

International Marine Energy Journal / 2022
Go to paper