Collaborative spatial decision support tools can contribute with setups for including stakeholders into marine spatial planning (MSP) processes with the purpose of increasing trust in planning outcomes, facilitate knowledge co-creation and shared planning goals, and provide transparent, scientific, inclusive, and technical foundations for planning. A new collaborative spatial decision support setup based on the combination of functionalities from two spatial decision support tools called SEANERGY and Baltic Explorer was designed for and tested in a workshop in 2020 targeted local authorities, NGOs, and citizens in Denmark with an interest in MSP. While the setup needs further testing among a wider span of stakeholders to support a pluralistic approach, the findings illustrate promising potentials from ranking conflicts and synergies in collaborative settings to make marine activity interests spatially visible in MSP and gain an overview of opportunities for sea use multi-functionality in context-based, interactive, goal-oriented stakeholder processes. The use of a visual platform such as Baltic Explorer to systematically explore locations of marine uses was positively evaluated to facilitate the workshop conflict-synergy discussions. Challenges relate to how to deal with disagreements on conflict-synergy scores and the subjectivity of opinions, but the demonstrated flexible, quick, transparent way to test the sensitivity of spatial patterns to differences in input conflict-synergy scores is found to provide a promising setup for including stakeholder opinions through collaborative settings, a setup adjustable to supplementary large-scale, individual, more representative surveys as well.
The space occupied by traditional and new human-based marine uses at sea is expanding, creating a need for developing methods to assess interactions between co-located uses in maritime spatial planning (MSP). However, no clear terminology for use-use interactions exists. Thus, an analytical framework for spatial decision support tools (DSTs) to assess use-use interactions is deduced from literature. Four spatial-temporal links are found to either alone or together constitute use-use interactions: location links, environmental links, technical links, and user attraction links. It is found to be important for DSTs to support co-location management in MSP by iteratively through the MSP process 1) spatially-temporally locate spatial-temporal links constituting use-use interactions, 2) list conflicts and synergies of the located use-use interactions, and 3) weight the conflicts and synergies. With this analytical framework, two types of DSTs are analysed for their ability to include co-location; matrix- and ranking-based DSTs to detect conflicts and synergies and space allocating DSTs to avoid/minimise conflicts and optimise synergies. Whereas the first group of tools categorise or rank use-use combinations, the latter group use information about which multi-use combinations are possible as pre-existing knowledge, and thus the two groups of DSTs can advantageously be used together. A discrepancy is found between the co-location framework and the DSTs. It is argued that future tools could work on removing this discrepancy by considering the spatial-temporal links of use-use interactions, strengthen the focus on synergies, as well as prioritize ranking of synergies and conflicts over binary approaches that only evaluate spatial compatibility.