Knowledge

Keyword: Process Planning

paper

Utility of collaborative GIS for maritime spatial planning: Design and evaluation of Baltic Explorer

Christian Koski, Mikko Rönneberg, Pyry Kettunen, Søren Eliasen, Henning Sten Hansen & Juha Oksanen

Due to rigid copyright rules the following is a short summary of the abstract, go to the open source:
Maritime spatial planning (MSP) needs tools to facilitate discussions and manage spatial data in collaborative workshops that involve actors with different types of backgrounds and expertise. Never the less, spatial tools in real-world MSP are only sparsely used. In the article it is argued that more knowledge about the use of GIS can support MSP is needed. It studies the use of GIS as a tool for collaborative MSP in five steps around development and testing of the prototype collaborative GIS, Baltic Explorer. The evaluation of the use found that the present functionalities of the system could support and facilitate the collaborative discussions in the MSP work. Still more research in the use of spatial data in the MSP process is needed.

Transactions in GIS / 2021
Go to paper
paper

Supporting integrative maritime spatial planning by operationalising SEANERGY – a tool to study cross-sectoral synergies and conflicts

Ida Maria Bonnevie, Henning Sten Hansen & Lise Schrøder

With growing pressures on marine ecosystems and on marine space, an increasingly needed strategy to optimize the use of marine space is to co-locate synergic marine human uses in close spatial–temporal proximity while separating conflicting marine human uses. The ArcMap toolbox SEANERGY is a new, cross-sectoral spatial decision support tool (DST) that enables maritime spatial planners to consider synergies and conflicts between marine uses to support assessments of co-location options. Cross-sectoral approaches are important to reach more integrative maritime spatial planning (MSP) processes. As this article demonstrates through a Baltic Sea analysis, SEANERGY presents a crosssectoral use catalog for MSP through enabling the tool users to answer important specific questions to spatially and/or numerically weight potential synergies/conflicts between marine uses. The article discusses to what degree such a cross-sectoral perspective can support integrative MSP processes. While MSP integrative challenges still exist, SEANERGY enables MSP processes to move towards developing shared goals and initiate discussions built on best available knowledge regarding potential use-use synergies and use-use conflicts for whole sea basins at once.

International Journal of Digital Earth / 2021
Go to paper
paper

Supporting integrative maritime spatial planning by operationalizing SEANERGY – a tool to study cross-sectoral synergies and conflicts

Ida Maria Bonnevie, Henning Sten Hansen & Lise Schrøder

With growing pressures on marine ecosystems and on marine space, an increasingly needed strategy to optimize the use of marine space is to co-locate synergic marine human uses in close spatial–temporal proximity while separating conflicting marine human uses. The ArcMap toolbox SEANERGY is a new, cross-sectoral spatial decision support tool (DST) that enables maritime spatial planners to consider synergies and conflicts between marine uses to support assessments of co-location options. Cross-sectoral approaches are important to reach more
integrative maritime spatial planning (MSP) processes. As this article demonstrates through a Baltic Sea analysis, SEANERGY presents a crosssectoral use catalog for MSP through enabling the tool users to answer important specific questions to spatially and/or numerically
weight potential synergies/conflicts between marine uses. The article discusses to what degree such a cross-sectoral perspective can support integrative MSP processes. While MSP integrative challenges still exist, SEANERGY enables MSP processes to move towards developing shared goals and initiate discussions built on best available knowledge regarding potential use-use synergies and use-use conflicts for whole sea basins at once.

International Journal of Digital Earth / 2021
Go to paper
paper

Assessing use-use interactions at sea: A theoretical framework for spatial decision support tools facilitating co-location in maritime spatial planning

Ida Maria Bonnevie, Henning Sten Hansen & Lise Schrøder

The space occupied by traditional and new human-based marine uses at sea is expanding, creating a need for developing methods to assess interactions between co-located uses in maritime spatial planning (MSP). However, no clear terminology for use-use interactions exists. Thus, an analytical framework for spatial decision support tools (DSTs) to assess use-use interactions is deduced from literature. Four spatial-temporal links are found to either alone or together constitute use-use interactions: location links, environmental links, technical links, and user attraction links. It is found to be important for DSTs to support co-location management in MSP by iteratively through the MSP process 1) spatially-temporally locate spatial-temporal links constituting use-use interactions, 2) list conflicts and synergies of the located use-use interactions, and 3) weight the conflicts and synergies. With this analytical framework, two types of DSTs are analysed for their ability to include co-location; matrix- and ranking-based DSTs to detect conflicts and synergies and space allocating DSTs to avoid/minimise conflicts and optimise synergies. Whereas the first group of tools categorise or rank use-use combinations, the latter group use information about which multi-use combinations are possible as pre-existing knowledge, and thus the two groups of DSTs can advantageously be used together. A discrepancy is found between the co-location framework and the DSTs. It is argued that future tools could work on removing this discrepancy by considering the spatial-temporal links of use-use interactions, strengthen the focus on synergies, as well as prioritize ranking of synergies and conflicts over binary approaches that only evaluate spatial compatibility.

Marine Policy / 2019
Go to paper