Offshore energy hubs connect large amounts of offshore wind to a hub from where the generation can be transmitted to onshore, potentially linking to multiple surrounding countries. The benefits of such hubs, and the related meshed offshore grid to connect them, have been investigated in the North Sea. The system-wide impacts of offshore energy hubs in the Baltic Sea are less studied; however, the region is seeing increased interest in offshore wind development. This paper uses detailed offshore wind generation simulations and energy system optimisation to investigate the cost-effectiveness of offshore energy hubs in the Baltic Sea in different scenarios towards 2050. The results show that the largest deployment of offshore energy hubs occurs when the energy system is highly electrified. The strongest development of the offshore energy hubs occurs in the southern part of the Baltic Sea.
The report is organized as follows. The introduction will lay out the current state-of-play of eco-efficiency and the zeitgeist of the current situation on maritime that we find ourselves in, in 2020. The next section will provide some historical context looking back to 2010 and 2000 to trace the trajectory and developmental course on which we are. The core contribution of this report is the Maritime Operations Roadmap that can be found in Figure 1 on page 9. This illustration plots the expectations for technological capabilities and policy from 2020 to 2030.
ECOPRODIGI (2017-2020) is an Interreg Baltic Sea Region flagship project, which links research organisations, enterprises, associations and business support organisations. Altogether, 21 partners jointly investigate the most critical eco-inefficiencies in maritime processes in the Baltic Sea Region as well as develop and pilot digital solutions for improving the eco-efficiency by focusing on three specific cases: 1) digital performance monitoring of vessels, 2) cargo stowage optimisation at ports and 3) process optimisation at shipyards. Furthermore, looking towards the future, the project partners, on one hand, create a digitalisation roadmap and training modules for future decision makers in the maritime industry but also reach out to policymakers to engage them in discussion regarding how they can support the digital change. This report provides an overview of the project and main findings achieved to date, describes the main eco-inefficiencies identified and presents the potential of digital technologies and new concepts for improving them. Also, as the current digital transformation relates to the way how changes are managed in organisations, this report presents the main challenges and requirements identified in the process of moving towards more digitalised business operations. Finally, the last section looks at the maritime sector from a broader perspective and provides some ideas about the most likely future developments. The main findings of the project so far indicate that major improvements in eco-efficiency can be carried out in the maritime industry. They can be summarised as follows: 1) In the first case, ‘digital performance monitoring’, the project partners estimate, for instance, that fuel consumption and emissions can potentially be reduced by 2-20% based on data and analysis from distinct ship segments, routes and their baseline situations. The reductions are possible to achieve by taking such actions as capitalising on the latest digital technologies, utilising and analysing real-time operational data and vessel performance, anticipating operating conditions and maintenance of the ship and its components, changing working methods and improving practices as well as placing a focus on the training of personnel. 2) In the second case, ‘cargo stowage optimisation’ the project partners identified a set of eco-efficiency bottlenecks in the cargo stowage processes at ports that can be subject to improvement. The use of advanced digital technologies can contribute to more efficient utilisation of vessels and terminal operations. The port stays can be reduced, and, thereby, vessels can sail more slowly and reduce fuel consumption and emissions. Moreover, when stability calculations improve due to further digitalisation of cargo unit data, the ship can be loaded more optimally and the amount of ballast water can potentially be decreased without compromising safety, which again reduces fuel consumption on the sea leg. It is estimated that fuel consumption and emissions can potentially be reduced by 2-10% per route and ship and that additional benefits can be gained on the landside due to future digital decision support tools applied for the end-to-end stowage process. In addition, improved cargo unit pick up time estimates can be provided to customers waiting for the cargo to be handled at port, whereby the service improves. 3) In the third case, ‘process optimisation at shipyards’, improved situational awareness and process management, including the use of new technologies, such as 3D and solutions for managing the complex supply chain, have potential for improving the shipyard processes aimed at increased eco-efficiency. For example, in block building phase 3D technology reduces lead-time and potentially saves hundreds of man-hours in rework due to the fact that more efficient processes and proactive actions are enabled.
The report is organized as follows. The introduction will lay out the current state-of-play of eco-efficiency and the zeitgeist of the current situation on maritime that we find ourselves in, in 2020. The next section will provide some historical context looking back to 2010 and 2000 to trace the trajectory and developmental course that we are on. The core contribution of this report is the Shipyard 4.0 Roadmap, that can be found in Figure 1 on page 9. This illustration plots the expectations for technological capabilities and policy from 2020 to 2030. The descriptions of the elements of the roadmap are provided in Appendix 1.
The activities and emissions from leisure boats in the Baltic Sea have been modeled in a comprehensive approach for the first time, using a new simulation model leisure Boat Emissions and Activities siMulator (BEAM). The model utilizes survey data to characterize the national leisure boat fleets. Leisure boats have been categorized based on their size, use and engine specifications, and for these subcategories emission factors for NOx, PM2.5, CO, non-methane volatile organic compounds (NMVOCs), and releases of copper (Cu) and zinc (Zn) from antifouling paints have been estimated according to literature values. The modeling approach also considers the temporal and spatial distribution of leisure boat activities, which are applied to each simulated leisure boat separately. According to our results the CO and NMVOC emissions from leisure boats, as well as Cu and Zn released from antifouling paints, are significant when compared against the emissions originating from registered commercial shipping in the Baltic Sea. CO emissions equal 70 % of the registered shipping emissions and NMVOC emissions equal 160 % when compared against the modeled results in the Baltic Sea in 2014. Modeled NOx and PM2.5 from the leisure boats are less significant compared to the registered shipping emissions. The emissions from leisure boats are concentrated in the summer months of June, July and August and are released in the vicinity of inhabited coastal areas. Given the large emission estimates for leisure boats, this commonly overlooked source of emissions should be further investigated in greater detail.