This paper presents a numerical benchmark study of wave propagation due to a paddle motion using different high-fidelity numerical models, which are capable of replicating the nearly actual physical wave tank testing. A full time series of the measured wave generation paddle motion that was used to generate wave propagation in the physical wave tank will be utilized in each of the models contributed by the participants of International Energy Agency Ocean Energy Systems Task 10, which includes both computational fluid dynamics and smoothed particle hydrodynamics models. The high-fidelity simulations of the physical wave test case will allow for the evaluation of the initial transient effects from wave ramp-up and its evolution in the wave tank over time for two representative regular waves with varying levels of nonlinearity. Metrics like the predicted wave surface elevation at select wave probes, wave period, and phase-shift in time will be assessed to evaluate the relative accuracy of numerical models versus experimental data within specified time intervals. These models will serve as a guide for modelers in the wave energy community and provide a base case to allow further and more detailed numerical modeling of the fixed Kramer Sphere Cases under wave excitation force wave tank testing.
Physical wave basin tests with a focus on uncertainty estimation have been conducted on a sphere subjected to wave loads at Aalborg University as part of the effort of the OES Wave Energy Converters Modeling Verification and Validation (formerly, OES Task 10) working group to increase credibility of numerical modeling of WECs. The tests are referred to as the Kramer Sphere Cases, and the present note is dealing with wave excitation force tests on a fixed model. The present note is including details to facilitate CFD models which replicate the physical setup in detail.
Physical wave basin tests with a focus on uncertainty estimation have been conducted on a fixed sphere subjected to wave loads at Aalborg University as part of the effort of the OES Wave Energy Converters Modeling Verification and Validation (formerly, OES Task 10) working group to increase credibility of numerical modeling of WECs.
The present note defines an idealized test case formulated to accurately represent the physical tests in a simple way. The test case consists of a fixed, rigid sphere half submerged in water subjected to regular waves of three different levels of linearity. The objective of the present note is to allow for numerical tests of the idealized test case.