Media: Report


Optimal placement of P-2-X facility in conjunction with Bornholm energy island: Preliminary overview for an immediate decarbonisation of maritime transport

Singlitico, Alessandro; Campion, Nicolas Jean Bernard; Münster, Marie; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio; Suo, Cathy Jingqing; Karlsson, Kenneth; Jørgensen, Torben; Waagstein, Jeppe Eimose ; Bendtsen, Maja F.

Bornholm plays a central role in the future offshore power expansion in the
Baltic Sea and as a node between future interconnections between countries. The
necessity to store/convert surplus power puts Bornholm in position to be the first
natural energy hub. Bornholm can be not only the centre for electrical equipment
such as substations but also a centre for P-2-X production from offshore wind power.
The production of electrofuels through P-2-X technologies can penetrate the
transport sector in Bornholm, the hardest to decarbonise, starting with the highspeed ferries to Ystad and Køge, which use in Rønne Havn as their base. The
needs to comply with existing and imminent stricter regulations create the
necessity for an immediate transition, before a fleet renewal. Therefore, this study
investigates the conversion of the hydrogen, produced using offshore wind
electricity, into methanol, whose use as a fuel is mature and does not require
substantial changes to the fleet.

Technical University of Denmark / 2020
Go to report

Microgrids at large ports

Spaniol, Matthew J.

The transition of the North Sea Region’s maritime and offshore industries toward a sustainable“Blue Growth” future is driven by incentives to unlock new growth areas, develop and apply new technologies, and increase productivity. The development and utilization of microgrids provides an opportunity to accomplish these goals. The rapid development in infrastructure and the trend toward the electrification of the seas has provided a context for growth, and microgrids pose a moduleto couple to existing infrastructure; a retrofit to improve the utilization of renewable energy sources. This report presents the outcome and analysis of a survey taken by 22 respondents. Respondents expect microgrids at large ports to emerge in 10 years and respondents rated the business potential at 3,77/5. Political factors are mentioned by most responses (40%), followed by social (30%), economic (16%), and technological factors (14%).

Periscope / 2020
Go to report

Microgrids at Large Ports

Spaniol, Matt

This report provides an assessment on the prospects for the microgrids at large ports. A survey has been developed to this end and has been evaluated by respondents to crowdsource a forecasted time horizon to implementation and its potential as an opportunity for the maritime and offshore industries. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.

Periscope Report / 2020
Go to report

The role of Ro-Ro shipping in a stricter regulatory environment

Panagakos, George; Solakivi, Tomi; Zis, Thalis; Psaraftis, Harilaos N.

This report presents the results of Activity 3.2-2 of the Scandria®2Act project. It investigates the sensitivity of the Ro-Ro services along the Scandria® corridor to fuel cost fluctuations, anticipates the adverse effects of a possible fuel price hike and discusses potential mitigating measures.

Among the 77 Ro-Ro services that include at least one direct connection between two Baltic ports, the Finland-Germany connections were selected for further examination mainly because this is where the ScanMed and NSB core network corridors meet providing two major alternatives, each of which offer at least two options. In terms of abatement options available to the Ro-Ro operators, the study considers only the switching from Heavy Fuel Oil (HFO) to the compliant but more expensive Marine Gas Oil (MGO), which happens to be the only feasible solution in the short-run that does not require a substantial capital investment.

The study deployed two different approaches in meeting its objectives. The first one looked at the problem from the macro-level perspective and the analysis was based on aggregate annual statistics of the ports serving the Finland-Germany connections. A multiple regression model estimated the sensitivity of cargo flows to fuel price fluctuations. Although most of the cargo volumes exhibit a statistically significant sensitivity to fuel price, in all cases this is below 1.0, indicating a rather inelastic
behaviour. The results show that an increase in fuel price penalises the volume of lorries on the longdistance Helsinki-Germany route in favour of the shorter Helsinki-Tallinn and Hanko-Germany options. The trailer (unaccompanied) traffic exhibit a different behaviour that might relate to the pricing policies of the Ro-Ro operators in relation to this market segment.

/ 2019
Go to report

Shipper needs in relation to multimodal freight transport services

Panagakos, George; Psaraftis, Harilaos N.

In supporting multimodal freight transport services, Activity 3.2-3 focuses on identifying the priorities of the shippers (cargo owners) in relation to intermodal logistics solutions that comprise the core of multimodality.
A literature search was performed on this subject. It identified a long list of characteristics that shippers consider necessary for efficient and effective intermodal transport. They include price, delivery time, time reliability of delivery, frequency of shipments, cargo safety and security, reliability of pick up time, ability to respond to customer needs, proactive notification of problems, etc. A number of pre-conditions
were also identified. They include the commodity type, value, density and time-sensitivity, freight distance, direction of haul (head-haul/back-haul), meaningful load factors and transhipment costs. Based on the results of the literature search, a questionnaire was designed for obtaining shippers’ assessment of their experience with intermodality, the factors driving it and the measures proposed for its promotion. It is noted that the latter subject has not been treated by the previous studies examined.
After being revised on the basis of feedback received from logistics experts, the questionnaire was promoted through shipper associations in the five study countries (Germany, Denmark, Sweden, Norway and Finland). Responses were received through an electronic survey lasted from July 2017 to June 2018. The questionnaire was also distributed in paper form to the participants of the event “Future transport and logistics in the Fehmarnbelt Region – How to be prepared for changing cargo flows” on 29 May 2018 during the Fehmarnbelt days 2018 in Malmö, Sweden. Furthermore, responses were enriched by a number of interviews from selected companies and associations.
The majority of the 33 usable responses obtained comes from Germany and Denmark. The companies that have arranged intermodal shipments during 2016 find their experience more than satisfactory.
Germans appear to be 25% happier with intermodality than their Danish counterparts, who are still satisfied. The differential is greater with regard to business types. Freight forwarders, who are more exposed to intermodal realities than shippers, display a much higher satisfaction than the latter, who fall a bit short of the satisfactory level albeit still on the positive side.
Among the reasons for going intermodal, the specific customer/supplier instructions appear to be the most important one. This finding suggests the need to identify the right decision-makers prior to designing activities promoting intermodal transportation. Competitive pricing follows suit surpassing all other quality characteristics (in Germany, it is even more important than customer preferences). This
result contradicts the findings of other studies that assign more importance to attributes such as frequency of service, reliability, etc. The appropriateness of shipment size and the convenience of transit time follow price concerns in the scale of importance. It is interesting to note that the advantages offered by intermodality in terms of low emissions and improved company image appear very low in the
importance spectrum despite the emphasis placed on them by the policy makers.
As expected, the type of business has a bearing on these priorities. Competitive pricing is the main concern of shippers, while from the freight forwarders’ perspective, customer preferences remain the decisive factor. An interesting observation is that the only occasion that environmental concerns climb higher than shipment size and transit time is when it comes to other businesses, probably pointing to the more distant positioning of this type of respondents to the realities of the market place

/ 2019
Go to report

Relational Maritime Contracts: A Cost and Risk Perspective

Tvarnø, Christina; Østergaard, Kim; Schleimann, Henriette

This follow up paper concerns relational contracts in the maritime industry from a legal, game theoretical, and strategic perspective. The paper discusses the purpose of a relational contract, the specific legal characteristics in a relational contract, and draw up economic explanations of the relations among the clauses in relational contract. Strategy and game theory are used to explain the output of negotiations and explain how to behave if to obtain joint utility in a contractual relationship in the maritime industry.

CBS Maritime / 2017
Go to report

Arctic Shipping: Commercial Opportunities and Challenges

Carsten Ørts Hansen, Peter Grønsedt, Christian Lindstrøm Graversen, Christian Hendriksen

This report forms part of the ambitious CBS Maritime research initiative entitled “Competitive Challenges and Strategic Development Potential in Global Maritime Industries” which was launched with the generous support of the Danish Maritime Fund. The competitiveness initiative targets specific maritime industries (including shipping, offshore energy, ports, and maritime service and equipment suppliers) as well as addresses topics that cut across maritime industries (regulation and competitiveness). The topics and narrower research questions addressed in the initiative were developed in close dialogue between CBS Maritime and the maritime industries in Denmark. CBS Maritime is a Business in Society (BiS) Platform at Copenhagen Business School committed to the big question of how to achieve economic and social progress in the maritime industries. CBS Maritime aims to strengthen a maritime focus at CBS and create the foundation for CBS as a stronger partner for the maritime industries, as well as for other universities and business school with a devotion to maritime economics research. The competitiveness initiative comprises a number of PhD projects and five short term mapping projects, the latter aiming at developing key concepts and building up a basic industry knowledge base for further development of CBS Maritime research and teaching. This report attempts to map the opportunities and challenges for the maritime industry in an increasingly accessible Arctic Ocean

CBS Maritime / 2016
Go to report

Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions

Karsten, Christian Vad; Røpke, Stefan; Pisinger, David

We introduce a decision support tool for liner shipping companies to optimally determine the sailing speed and needed fleet for a global network. As a novelty we incorporate cargo routing decisions with tight transit time restrictions on each container such that we get a realistic picture of the utilization of the network. Furthermore, we show that it is possible to extend the model to include optimal time scheduling decisions such that the time associated with transshipments is also reflected accurately. To solve the speed optimization problem we propose an exact algorithm based on Benders decomposition and column generation that exploits the separability of the problem. Computational results show that the method is applicable to liner shipping networks of realistic size and that it is important to incorporate cargo routing decisions when optimizing speed.

DTU Management Engineering / 2015
Go to report

Offshore Supply Industry Dynamics: The Main Drivers in the Energy Sector and the Value Chain Characteristics for Offshore Oil and Gas and Offshore Wind

Olesen, Thomas Roslyng

The value chains for offshore oil and gas and offshore wind are both basically driven by the demand for energy. This is heavily dependent on a number of factors including the price of various energy sources and the policy making of the states which influence legislation, indirect subsidies and direct investments. At the center of both value chains are the energy companies. The energy companies have a number of suppliers and sub suppliers which provide a range of equipment and services to the offshore operations. The supply industry is characterized by horizontal cooperation (between suppliers at the same level) and vertical cooperation (between suppliers in different layers). Finally the suppliers and the energy companies are supported by a number of companies which are usually not considered as part of the offshore sector but are important none the less. These companies provide a number of services including includes legal advice, financing, insurance etc. The two value chains have a number of activities in common. Both include (1) a tender and concession phase where the energy company obtains the right to explore and produce energy from the authorities. (2) An exploration phase where the physical location is examined and the installation is planned. (3) An installation phase where the equipment is produced and transported to the site where it is installed. (4) An operation phase where the energy is produced or the energy source is extracted and (5) a decommissioning phase where the field is abandoned. Most suppliers are positioned in several links of one or both value chains, at various levels (direct supplier, sub supplier, 3rd tier supplier etc.) and providing a variety of services. A supplier can move to new positions within the value chain. The increased servitization is a good example. Traditional manufacturers are often 2nd or 3rd tier suppliers in the installation phase. But by providing after sales services these companies also become direct suppliers to the energy company in the operations phase. Finally a supplier can have different positions in different geographical markets. A supplier can thus be a direct (1st tier) supplier in one market but needs to go through a local contractor (as a 2nd tier supplier) in another market – even if the provided service is exactly the same in both cases.

CBS Maritime / 2015
Go to report