Knowledge

Media: Report

report

Maritime industry processes in the Baltic Sea Region: Synthesis of eco-inefficiencies and the potential of digital technologies for solving them

Elisa Aro, Niels Gorm Maly Rytter, Teemu Itälinna

ECOPRODIGI (2017-2020) is an Interreg Baltic Sea Region flagship project, which links research organisations, enterprises, associations and business support organisations. Altogether, 21 partners jointly investigate the most critical eco-inefficiencies in maritime processes in the Baltic Sea Region as well as develop and pilot digital solutions for improving the eco-efficiency by focusing on three specific cases: 1) digital performance monitoring of vessels, 2) cargo stowage optimisation at ports and 3) process optimisation at shipyards. Furthermore, looking towards the future, the project partners, on one hand, create a digitalisation roadmap and training modules for future decision makers in the maritime industry but also reach out to policymakers to engage them in discussion regarding how they can support the digital change. This report provides an overview of the project and main findings achieved to date, describes the main eco-inefficiencies identified and presents the potential of digital technologies and new concepts for improving them. Also, as the current digital transformation relates to the way how changes are managed in organisations, this report presents the main challenges and requirements identified in the process of moving towards more digitalised business operations. Finally, the last section looks at the maritime sector from a broader perspective and provides some ideas about the most likely future developments. The main findings of the project so far indicate that major improvements in eco-efficiency can be carried out in the maritime industry. They can be summarised as follows: 1) In the first case, ‘digital performance monitoring’, the project partners estimate, for instance, that fuel consumption and emissions can potentially be reduced by 2-20% based on data and analysis from distinct ship segments, routes and their baseline situations. The reductions are possible to achieve by taking such actions as capitalising on the latest digital technologies, utilising and analysing real-time operational data and vessel performance, anticipating operating conditions and maintenance of the ship and its components, changing working methods and improving practices as well as placing a focus on the training of personnel. 2) In the second case, ‘cargo stowage optimisation’ the project partners identified a set of eco-efficiency bottlenecks in the cargo stowage processes at ports that can be subject to improvement. The use of advanced digital technologies can contribute to more efficient utilisation of vessels and terminal operations. The port stays can be reduced, and, thereby, vessels can sail more slowly and reduce fuel consumption and emissions. Moreover, when stability calculations improve due to further digitalisation of cargo unit data, the ship can be loaded more optimally and the amount of ballast water can potentially be decreased without compromising safety, which again reduces fuel consumption on the sea leg. It is estimated that fuel consumption and emissions can potentially be reduced by 2-10% per route and ship and that additional benefits can be gained on the landside due to future digital decision support tools applied for the end-to-end stowage process. In addition, improved cargo unit pick up time estimates can be provided to customers waiting for the cargo to be handled at port, whereby the service improves. 3) In the third case, ‘process optimisation at shipyards’, improved situational awareness and process management, including the use of new technologies, such as 3D and solutions for managing the complex supply chain, have potential for improving the shipyard processes aimed at increased eco-efficiency. For example, in block building phase 3D technology reduces lead-time and potentially saves hundreds of man-hours in rework due to the fact that more efficient processes and proactive actions are enabled.

ECOPRODIGI Project / 2020
Go to report
report

Offshore Logistic Hubs

Spaniol, Matt

This report provides a summary on the prospects for developing offshore logistics hubs and their evaluation as opportunities for the maritime and offshore industries. The report’s findings are based on respondents’ answers to surveys and focuses on when offshore logistic hubs will come into operation and their business potential. The data for this report is based on desk research and an analysis of survey responses. The report is produced by the PERISCOPE network.

Periscope Report / 2020
Go to report
report

Offshore Energy Hubs

Spaniol, Matt

This report provides an assessment on the prospects for offshore energy hubs. Four use cases have been developed and evaluated by respondents in a survey instrument for their forecasted time horizon to implementation and their business potential as opportunities for the maritime and offshore
industries. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.

Periscope Report / 2020
Go to report
report

Road to Shipyard 4.0: The state of play, a brief history of maritime developments, and a future roadmap Focusing on the Baltic Sea and Shipyards

Spaniol, Matt; Lappalainen, Otto; Ehlers, Valdemar; Karvonen, Taipo; Karlsson, Jussi; Nåfors, Daniel; Piiroinen, Aki; Sutnikas, Andrius; Valtanen, Juha

The report is organized as follows. The introduction will lay out the current state-of-play of eco-efficiency and the zeitgeist of the current situation on maritime that we find ourselves in, in 2020. The next section will provide some historical context looking back to 2010 and 2000 to trace the trajectory and developmental course that we are on. The core contribution of this report is the Shipyard 4.0 Roadmap, that can be found in Figure 1 on page 9. This illustration plots the expectations for technological capabilities and policy from 2020 to 2030. The descriptions of the elements of the roadmap are provided in Appendix 1.

Ecoprodigi Report / 2020
Go to report
report

Smart inspection and maintenance: Aerial drones

Spaniol, Matt

This report provides a summary on the prospects for aerial drone applications for the smart inspection and maintenance for maritime and offshore industries. The report's findings are based on respondents' answers to surveys and focuses on when aerial drones will come into smart maintenance operations and their business potential. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.

Periscope Report / 2020
Go to report
report

Åben Innovation i Det Blå Danmark. På trods af DNA og NDA

Jakob Krause-Jensen, Bettina Skårup
Aarhus Universitet / 2020
Go to report
report

Microgrids at Large Ports

Spaniol, Matt

This report provides an assessment on the prospects for the microgrids at large ports. A survey has been developed to this end and has been evaluated by respondents to crowdsource a forecasted time horizon to implementation and its potential as an opportunity for the maritime and offshore industries. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.

Periscope Report / 2020
Go to report
report

Optimal placement of P-2-X facility in conjunction with Bornholm energy island: Preliminary overview for an immediate decarbonisation of maritime transport

Singlitico, Alessandro; Campion, Nicolas Jean Bernard; Münster, Marie; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio; Suo, Cathy Jingqing; Karlsson, Kenneth; Jørgensen, Torben; Waagstein, Jeppe Eimose ; Bendtsen, Maja F.

Bornholm plays a central role in the future offshore power expansion in the
Baltic Sea and as a node between future interconnections between countries. The
necessity to store/convert surplus power puts Bornholm in position to be the first
natural energy hub. Bornholm can be not only the centre for electrical equipment
such as substations but also a centre for P-2-X production from offshore wind power.
The production of electrofuels through P-2-X technologies can penetrate the
transport sector in Bornholm, the hardest to decarbonise, starting with the highspeed ferries to Ystad and Køge, which use in Rønne Havn as their base. The
needs to comply with existing and imminent stricter regulations create the
necessity for an immediate transition, before a fleet renewal. Therefore, this study
investigates the conversion of the hydrogen, produced using offshore wind
electricity, into methanol, whose use as a fuel is mature and does not require
substantial changes to the fleet.

Technical University of Denmark / 2020
Go to report
report

Microgrids at large ports

Spaniol, Matthew J.

The transition of the North Sea Region’s maritime and offshore industries toward a sustainable“Blue Growth” future is driven by incentives to unlock new growth areas, develop and apply new technologies, and increase productivity. The development and utilization of microgrids provides an opportunity to accomplish these goals. The rapid development in infrastructure and the trend toward the electrification of the seas has provided a context for growth, and microgrids pose a moduleto couple to existing infrastructure; a retrofit to improve the utilization of renewable energy sources. This report presents the outcome and analysis of a survey taken by 22 respondents. Respondents expect microgrids at large ports to emerge in 10 years and respondents rated the business potential at 3,77/5. Political factors are mentioned by most responses (40%), followed by social (30%), economic (16%), and technological factors (14%).

Periscope / 2020
Go to report
report

The role of Ro-Ro shipping in a stricter regulatory environment

Panagakos, George; Solakivi, Tomi; Zis, Thalis; Psaraftis, Harilaos N.

This report presents the results of Activity 3.2-2 of the Scandria®2Act project. It investigates the sensitivity of the Ro-Ro services along the Scandria® corridor to fuel cost fluctuations, anticipates the adverse effects of a possible fuel price hike and discusses potential mitigating measures.

Among the 77 Ro-Ro services that include at least one direct connection between two Baltic ports, the Finland-Germany connections were selected for further examination mainly because this is where the ScanMed and NSB core network corridors meet providing two major alternatives, each of which offer at least two options. In terms of abatement options available to the Ro-Ro operators, the study considers only the switching from Heavy Fuel Oil (HFO) to the compliant but more expensive Marine Gas Oil (MGO), which happens to be the only feasible solution in the short-run that does not require a substantial capital investment.

The study deployed two different approaches in meeting its objectives. The first one looked at the problem from the macro-level perspective and the analysis was based on aggregate annual statistics of the ports serving the Finland-Germany connections. A multiple regression model estimated the sensitivity of cargo flows to fuel price fluctuations. Although most of the cargo volumes exhibit a statistically significant sensitivity to fuel price, in all cases this is below 1.0, indicating a rather inelastic
behaviour. The results show that an increase in fuel price penalises the volume of lorries on the longdistance Helsinki-Germany route in favour of the shorter Helsinki-Tallinn and Hanko-Germany options. The trailer (unaccompanied) traffic exhibit a different behaviour that might relate to the pricing policies of the Ro-Ro operators in relation to this market segment.

/ 2019
Go to report