Knowledge

Media: Paper

paper

Investigation of Combustion Characteristics, Physical and Chemical Ignition Delay of Methanol Fuel in a Heavy-duty Turbo-charged Compression Ignition Engine

Chong Cheng*, Rasmus Faurskov Cordtz, Troels Dyhr Pedersen, Kim Winther, Niels Langballe Førby, Jesper Schramm

In previous research, there have been more investigations on methanol blended with other fuels such as diesel, biodiesel, gasoline, etc., but fewer investigations on methanol with ignition additives as a mono-fuel. To better understand the methanol mono-fuel combustion characteristics and to further apply them, a combined experimental and simulation study of methanol in a Scania heavy-duty compression ignition (CI) engine was carried out in this work. The experiments consisted of four groups with variable injection timings, variable fraction of ignition additives, variable charge air temperatures, and variable overall excess air ratios/power sweeps. Heat release rate (HRR), cylinder pressure, ignition delay and indicated efficiency were analyzed for each case. The analysis showed that the combustion type was partially premixed combustion (PPC) in some cases and diesel-like combustion in the rest. By observing all cases, the shortest ignition delay was 14.1°, and the longest was 22.8°. The indicated efficiencies were in the range of 0.35 to 0.43. Simulations and validation analyses were performed for all cases by a multi-packets model. The physical and chemical ignition delays were predicted. The physical ignition delays were in the range of 4.25 to 8.10°, and the chemical ignition delays were in the range of 6.66 to 17.1°. The chemical ignition delay was always longer than the physical one. This indicates that chemical ignition delay has to be prioritized to improve the ignition performance of methanol fuel.

Fuel / 2023
Go to paper
paper

Assessment of added resistance estimates based on monitoring data from a fleet of container vessels

Malte Mittendorf*, Ulrik Dam Nielsen, Harry B. Bingham, Jesper Dietz

A practical estimation methodology of the mean added resistance in irregular waves is shown, and the present paper provides statistical analyses of estimates for ships in actual conditions. The study merges telemetry data of more than 200 in-service container vessels with ocean re-analysis data from ERA5. Theoretical estimates relying on spectral calculations of added resistance are made for both long- and short-crested waves and are based on a combination of a parametric expression for the wave spectrum and a semi-empirical formula for the added resistance transfer function. The theoretical estimates are compared to predictions from an indirect calculation of added resistance relying on shaft power measurements and empirical estimates of the remaining resistance components. Overall, the comparison reveals a bias in bow oblique waves and higher sea states of the spectral estimates as well as the large variance of the empirically derived predictions — particularly in beam-to-following waves. One of the study’s main findings, confirming previous studies but based on a much larger dataset than in earlier similar studies, is that added resistance assessment based on in-service data is complex due to significant associated uncertainties.

Ocean Engineering / 2023
Go to paper
paper

Digital Ship Operations – Engine & Equipment Performance

Avendaño-Valencia, Luis David (Projektdeltager)Asimakopoulos, Ioannis (Projektdeltager)Rytter, Niels Gorm (Projektdeltager)

Ship engines are subject to a very demanding work environment, where maximum availability is a must. In this project we look at different operational variables of a marine engine from large cargo ships, with the aim of detecting and trending damage onset on different engine sub-components. This information can be used by owners to expedite O&M interventions and maximize ship availability.

Aalborg Universitet / 2023
Go to paper
paper

Contribution to the estimation of force coefficients of plain gas seals with high preswirl considering rotor-foundation dynamics

Thomas T. Paulsen, Ilmar F. Santos*, Line K.H. Clemmensen

Rotor dynamic force coefficients of gas seals strongly depend on the machine operational conditions. These force coefficients influence the overall dynamical response and modal properties of machines, consequently defining the machine vibration levels. Accurate estimations of the rotor dynamic coefficients are required for designing machines with low vibration amplifications and well-defined stability margins throughout the operational range. Experimental methods applied to test benches are used to validate such force coefficients and they normally rely on (i) the quality of the measurements and (ii) the assumption that the mathematical model is able to capture the whole system dynamics. If relevant dynamical contributions in a system are neglected by the mathematical model, the contribution will erroneously be concluded to originate from the seal being tested. The theoretical and experimental investigation in this paper focuses on quantifying and qualifying the effect of neglected system dynamics modelling on the estimation of seals force coefficients and stability margins. The in-situ identification of seal forces shows that the direct stiffness, cross-coupling stiffness, and direct damping coefficient estimations for a gas seal with high preswirl are statistically significantly affected by the baseline model. Nevertheless, the baseline model leads to small deviations of the seal force coefficient estimations. The prediction accuracy of stability margins is found to be more influenced by the baseline model describing the system dynamics than by the deviations between the seal force coefficient estimations.

Mechanical Systems and Signal Processing / 2023
Go to paper
paper

Numerical performance analysis of solid oxide fuel cell stacks with internal ammonia cracking

Omid Babaie Rizvandi*, Arash Nemati, Hossein Nami, Peter Vang Hendriksen, Henrik Lund Frandsen

Ammonia-fueled operation of solid oxide fuel cells is a promising alternative to their hydrogen-fueled operation. However, high ammonia decomposition rates at elevated operating temperatures of the solid oxide cells lead to a significant temperature drop at the stack inlet, causing increased thermal stresses. A multi-scale model is used in this study to investigate stack performance under direct feed and external pre-cracking of ammonia. Additionally, the effects of co- and counter-flow configurations, gas inflow temperatures, current density, and air flow rate on the stack performance under direct ammonia feed are examined. The simulation results show that for gas inlet temperatures above 750 °C, the power densities with direct feed and external cracking of ammonia differ by less than 5%. Moreover, it is indicated that the thermal stresses are lowest for the co-flow case, which decrease with decreasing gas inlet temperature and current density and with increasing air flow. Finally, this study shows that under practically applicable operating conditions, the risk of mechanical failure of the cells under direct ammonia feed operation is small.

International Journal of Hydrogen Energy / 2023
Go to paper
paper

Mitigating distortions during debinding of a monolithic solid oxide fuel cell stack using a multiscale, multiphysics model

Xing-Yuan Miao*, Stéven Pirou, Henrik Lund Frandsen

Improving the power density of solid oxide fuel cell stacks would significantly enhance this technology for transportation. Using a monolithic structure to downsize the stack dimension offers a key to elevate the power density of solid oxide fuel cell stacks. This innovative design is promising but manufacturing is a challenge. The monolith is co-sintered in one firing step, and the gas channels are formed by burning off sacrificial organic materials. Structure distortion or fracture was observed in post-mortem investigations. In this work a multiscale, multiphysics modelling approach is proposed to describe and resolve this challenge in the debinding process occurring in a monolithic stack, i.e. the burning of organics and transportation of gases through the gradually opening microstructure, as well as the pressure build-up in the microstructure due to gas development. Simulation results show that a prominent pressure peak is experienced in the stack when a plasticiser (polyethylene glycol) and a pore-former (polymethyl methacrylate) are decomposed simultaneously. To reduce the high pressures, we investigate two possible strategies: (i) changing the mixture of organic additives; (ii) modifying the debinding temperature profile. Three tapes with different pore-formers are prepared, and the generated pressures during debinding of the three stacks are compared. The corresponding stack shapes after debinding are recorded. Numerical investigations show a good agreement with the post-mortem observations. By changing the composition of organics the distortion or fracturing of the stack can be avoided. Furthermore, to facilitate stack manufacturing, the high pressures can also be reduced by adjusting the heating rates and dwell temperatures of debinding. By using the new temperature profile suggested by the simulation study, the duration of debinding can also be reduced.

Journal of the European Ceramic Society / 2023
Go to paper
paper

Capturing the effect of biofouling on ships by incremental machine learning

Malte Mittendorf*, Ulrik Dam Nielsen, Harry B. Bingham

Performance data from ships is subject to distributional shifts, sometimes referred to as concept drift. In this study, synthetic monitoring data is simulated for the KVLCC2, considering publicly available reference data and a semi-empirical simulation framework. Neural networks are trained to predict the required shaft power and to overcome the deterioration in model accuracy due to concept drift, three methods of incremental learning are applied and compared: (1) Layer freezing, (2) regularization, and (3) elastic weight consolidation. Furthermore, an implicit methodology for quantifying the changing hull and propeller performance is presented. In addition, a generic feature engineering framework is used for eliminating insignificant features. In two investigations, sudden and incremental concept drift scenarios are examined, and the effect of different uncertainty categories on model performance is studied in parallel based on three different datasets. As a main finding, it is confirmed that data quality is of great importance for accurate machine learning-driven performance monitoring — even in simulated environments. Furthermore, the study shows that freezing layers during incremental learning proves to be most robust and accurate, but it will be part of future work to examine this on actual sensor data.

Applied Ocean Research / 2023
Go to paper
paper

State Capitalism and Spanish Port Development along the Maritime Silk Road

Federico Jensen

With the rise of ‘new’ state capitalisms, control over transport infrastructure has returned to the forefront of competition in the global economy. This article investigates how different state capitalisms interact to enable economic developments in ports. It tracks the relationship between state-owned firms in the shipping and ports sectors through a case study of the port of Valencia in Spain and COSCO shipping group. The article identifies state capitalisms as variegated and relational to analyze the ways in which qualitatively different state capitalist dynamics interact at different scales. The article identifies two state capitalist dynamics which have been dominant in determining relations between Spanish and Chinese state capitalisms: 1) A commercial dynamic of maximizing Spanish ports profits by establishing new relationships with Chinese firms; and 2) an expansionary dynamic of increasing market share of Chinese state-owned firms in European shipping markets. These two dynamics are synergistic and have contributed to the competitiveness of Spanish ports and Chinese shipping firms by providing new capital to the port of Valencia and expanding the port's profile as a hub in the eastern Mediterranean, while also further solidifying COSCO's position in European shipping markets and its internalization and vertical integration strateg

Environment and Planning A / 2023
Go to paper
paper

Experimental investigation on the nearshore transport of buoyant microplastic particles

Bjarke Eltard Larsen*, Mustafa Ali Abdullah Al-Obaidi, Hasan Gokhan Guler, Stefan Carstensen, Koray Deniz Goral, Erik Damgaard Christensen, Nils B. Kerpen, Torsten Schlurmann, David R. Fuhrman

This paper presents experimental measurements of beaching times for buoyant microplastic particles released, both in the pre-breaking region and within the surf zone. The beaching times are used to quantify cross-shore Lagrangian transport velocities of the microplastics. Prior to breaking the particles travel onshore with a velocity close to the Lagrangian fluid particle velocity, regardless of particle characteristics. In the surf zone the Lagrangian velocities of the microplastics increase and become closer to the wave celerity. Furthermore, it is demonstrated that particles having low Dean numbers (dimensionless fall velocity) are transported at higher mean velocities, as they have a larger tendency to be at the free-surface relative to particles with higher Dean numbers. An empirical relation is formulated for predicting the cross-shore Lagrangian transport velocities of buoyant microplastic particles, valid for both non-breaking and breaking irregular waves. The expression matches the present experiments well, in addition to two prior studies.

Marine Pollution Bulletin / 2023
Go to paper
paper

Decision support for the Technician Routing and Scheduling Problem

David Pisinger, Mette Gamst

The technician routing and scheduling problem (TRSP) consists of technicians serving tasks subject to qualifications, time constraints and routing costs. In the literature, the TRSP is solved either to provide actual technician plans or for performing what-if analyses on different TRSP scenarios. We present a method for building optimal TRSP scenarios, e.g., how many technicians to employ, which technician qualifications to upgrade, etc. The scenarios are built such that the combined TRSP costs (OPEX) and investment costs (CAPEX) are minimized. Using a holistic approach we can generate scenarios that would not have been found by studying the investments individually. The proposed method consists of a matheuristic based on column generation. To reduce computational time, the routing costs of a technician are approximated. The proposed method is evaluated on data from the literature and on real-life data from a telecommunication company. The evaluation shows that the proposed method successfully suggests attractive scenarios. The method especially excels in ensuring that more tasks are serviced but also reduces travel time with around 16% in the real-life instance. We believe that the proposed method could constitute an important strategic tool in field service companies and we propose future research directions to further its applicability.

Journal / 2023
Go to paper