Knowledge

Media: Paper

paper

Corporate Social Responsibility in the International Shipping Industry: State-of-the-Art, Current Challenges and Future Directions

Thomsen, Peter Lund; Poulsen, René Taudal; Ackrill, Rob
The Journal of Sustainable Mobility, Volume 3 / 2016
Go to paper
paper

Solving the pre-marshalling problem to optimality with A* and IDA*

Tierney, Kevin; Pacino, Dario; Voß, Stefan

We present a novel solution approach to the container pre-marshalling problem using the A* and IDA* algorithms combined with several novel branching and symmetry breaking rules that significantly increases the number of pre-marshalling instances that can be solved to optimality. A* and IDA* are graph search algorithms that use heuristics combined with a complete graph search to find optimal solutions to problems. The container pre-marshalling problem is a key problem for container terminals seeking to reduce delays of inter-modal container transports. The goal of the container pre-marshalling problem is to find the minimal sequence of container movements to shuffle containers in a set of stacks such that the resulting stacks are arranged according to the time each container must leave the stacks. We evaluate our approach on three well-known datasets of pre-marshalling problem instances, solving over 500 previously unsolved instances to optimality, which is nearly twice as many instances as the current state-of-the-art method solves.

Flexible Services and Manufacturing Journal volume 29, pages223–259 (2017) / 2017
Go to paper
paper

Solving the Liner Shipping Fleet Repositioning Problem with Cargo Flows

Tierney, Kevin; Áskelsdóttir, Björg; Jensen, Rune Møller; Pisinger, David

We solve a central problem in the liner shipping industry called the liner shipping fleet repositioning problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between routes in a liner shipping network. Liner carriers wish to reposition vessels as cheaply as possible without disrupting cargo flows. The LSFRP is characterized by chains of interacting activities with a multicommodity flow over paths defined by the activities chosen. Despite its industrial importance, the LSFRP has received little attention in the literature. We introduce a novel mathematical model and a simulated annealing algorithm for the LSFRP with cargo flows that makes use of a carefully constructed graph; we evaluate these approaches using real-world data from our industrial collaborator. Additionally, we compare the performance of our approach against an actual repositioning scenario, one of many undertaken by our industrial collaborator in 2011. Our simulated annealing algorithm is able to increase the profit from $18.1 to $31.8 million using only a few minutes of CPU time. This shows that our algorithm could be used in a decision support system to solve the LSFRP.

Transportation Science 49 (3) / 2014
Go to paper
paper

Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion

Tillig, Fabian; Ringsberg, Jonas W.; Psaraftis, Harilaos N.; Zis, Thalis

To achieve IMO’s goal of a 50% reduction of GHG emission by 2050 (compared to the 2008 levels), shipping must not only work towards an optimization of each ship and its components but aim for an optimization of the complete marine transport system, including fleet planning, harbour logistics, route planning, speed profiles, weather routing and ship design. ShipCLEAN, a newly developed model, introduces a coupling of a marine transport economics model to a sophisticated ship energy systems model – it provides a leap towards a holistic optimization of marine transport systems. This paper presents how the model is applied to propose a reduction in fuel consumption and environmental impact by speed reduction of a container ship on a Pacific Ocean trade and the implementation of wind assisted propulsion on a MR Tanker on a North Atlantic trade. The main conclusions show that an increase of the fuel price, for example by applying a bunker levy, will lead to considerable, economically motivated speed reductions in liner traffic. The case study sowed possible yearly fuel savings of almost 21 300 t if the fuel price would be increased from 300 to 1000 USD/t. Accordingly, higher fuel prices can motivate the installation of wind assisted propulsion, which potentially saves up to 500 t of fuel per year for the investigated MR Tanker on a transatlantic route.

Transportation Research Part D: Transport and Environment Volume 83 / 2020
Go to paper
paper

Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach

W. Fricke, H. Remes, O. Feltz; I. Lillemäe; D. Tchuindjang; T. Reinert; A. Nevierov; W. Sichermann; M. Brinkmann; T. Kontkanen; Bohlmann, Berend; L. Molter

To improve the energy efficiency, the demand for new light-weight solutions has been increased significantly in the last decades. The weight reduction of the current ship structures is possible using thinner plates, that is, plate thickness between 3 and 4 mm. However, at present this is, in normal cases, not possible due to the 5 mm minimum plate thickness requirement given by classification societies. The present paper investigates the fatigue strength of thin-plated ship structures. In the European research project BESST – ‘Breakthrough in European Ship and Shipbuilding Technologies’ – the extensive fatigue test programme was carried out for butt- and fillet-welded specimens, which were manufactured by the arc, laser and laser-hybrid welding methods. The test programme also covered the different production quality and thus a large variation of misalignments was included. Fatigue test results were analysed using the nominal as well as the structural stress approach, where the actual geometry of the specimens was taken into account. The results show that the present design S–N curve with slope value of 3 is applicable to thin plates, but it is slightly non-conservative. The fatigue test results for thin plates show better agreement with the slope value of 5. For thin plates and slender ship structures, the secondary bending stress due to angular misalignment plays an important part and changes in a non-linear way with the applied tension load. Therefore, it is important to consider the plate straightening effect in structural stress analysis.

Ships and Offshore Structures, 10:1 / 2015
Go to paper
paper

Time Reliability of the Maritime Transportation Network for China’s Crude Oil Imports

Wang, Shuang; Lu, Jing; Jiang, Liping

To evaluate the transportation time reliability of the maritime transportation network for China’s crude oil imports under node capacity variations resulting from extreme events, a framework incorporating bi-level programming and a Monte Carlo simulation is proposed in this paper. Under this framework, the imported crude oil volume from each source country is considered to be a decision variable, and may change in correspondence to node capacity variations. The evaluation results illustrate that when strait or canal nodes were subject to capacity variations, the network transportation time reliability was relatively low. Conversely, the transportation time reliability was relatively high when port nodes were under capacity variations. In addition, the Taiwan Strait, the Strait of Hormuz, and the Strait of Malacca were identified as vulnerable nodes according to the transportation time reliability results. These results can assist government decision-makers and tanker company strategic planners to better plan crude oil import and transportation strategies.

Sustainability, Volume 12 / 2020
Go to paper
paper

A multiple ship routing and speed optimization problem under time, cost and environmental objectives

Wen, Min; Pacino, Dario; Kontovas, Christos A.; Psaraftis, Harilaos N.

The purpose of this paper is to investigate a multiple ship routing and speed optimization problem under time, cost and environmental objectives. A branch and price algorithm as well as a constraint programming model are developed that consider (a) fuel consumption as a function of payload, (b) fuel price as an explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory costs. The alternative objective functions are minimum total trip duration, minimum total cost and minimum emissions. Computational experience with the algorithm is reported on a variety of scenarios.

Transportation Research Part D: Transport and Environment Volume 52, Part A / 2017
Go to paper
paper

Full-shipload tramp ship routing and scheduling with variable speeds

Wen, Min; Røpke, Stefan; Petersen, H.L.; Larsen,R.; Madsen,O.B.G.

This paper investigates the simultaneous optimization problem of routing and sailing speed in the context of full-shipload tramp shipping. In this problem, a set of cargoes can be transported from their load to discharge ports by a fleet of heterogeneous ships of different speed ranges and load-dependent fuel consumption. The objective is to determine which orders to serve and to find the optimal route for each ship and the optimal sailing speed on each leg of the route so that the total profit is maximized. The problem originated from a real-life challenge faced by a Danish tramp shipping company in the tanker business. To solve the problem, a three-index mixed integer linear programming formulation as well as a set packing formulation is presented. A novel Branch-and-Price algorithm with efficient data preprocessing and heuristic column generation is proposed. The computational results on the test instances generated from real-life data show that the heuristic provides optimal solutions for small test instances and near-optimal solutions for larger test instances in a short running time. The effects of speed optimization and the sensitivity of the solutions to the fuel price change are analyzed. It is shown that speed optimization can improve the total profit by 16% on average and the fuel price has a significant effect on the average sailing speed and total profit.

Computers & Operations Research, Volume 70 / 2016
Go to paper
paper

Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine

Westlye, Fredrik R.; Ivarsson, Anders; Schramm, Jesper

This study concerns nitrogen based emissions from a hydrogen enriched ammonia fueled SI engine. These emissions deserve special attention as their formation may differ from conventional HC combustion due to the nitrogen content in the fuel. A range of experiments are conducted with a single cylinder 0.612 l CFR engine with a compression ratio varying from 7 to 15 using a fuel composition of 80 vol% NH3 and 20 vol% H2. Wet exhaust samples are analysed with an FT-IR. Emission measurements reveal that nitric oxide stem from other reaction paths than the dissociation of molecular nitrogen. This causes the NO emissions to peak around 35% rather than 10% excess air, as is typical in HC fueled SI-engines. However the magnitude of NO emissions are comparable to that of measurements conducted with gasoline due to lower flame temperatures. Nitrogen dioxide levels are higher when comparing with gasoline, but has a relatively low share of the total NOx emissions (3–4%). Nitrous oxide is a product of NH2 reacting with NO2 and NH reacting with NO. The magnitude is largely affected by ignition timing due to the temperature development during expansion and the amount of excess air, as increased oxygen availability stimulates the formation of the NH2 radical and the levels of NO2 are higher. Under ideal operating conditions (MBT ignition timing) N2O levels are very low. The dominating contributors to unburned ammonia are chamber crevices as the magnitude of these emissions is greatly affected by the compression ratio. However, levels are lower than required in order to eliminate all NOx emissions with a SCR catalyst.

Fuel, Volume 111 / 2013
Go to paper
paper

Emission inventories for ships in the arctic based on satellite sampled AIS data

Winther, Morten; Christensen, Jesper H.; Plejdrup, Marlene S.; Ravn, Erik S.; Eriksson, Ómar F.; Kristensen, Hans Otto

This paper presents a detailed BC, NOx and SO2 emission inventory for ships in the Arctic in 2012 based on satellite AIS data, ship engine power functions and technology stratified emission factors. Emission projections are presented for the years 2020, 2030 and 2050. Furthermore, the BC, SO2 and O3 concentrations and the deposition of BC are calculated for 2012 and for two arctic shipping scenarios – with or without arctic diversion routes due to a possible polar sea ice extent in the future.

In 2012, the largest shares of Arctic ships emissions are calculated for fishing ships (45% for BC, 38% for NOx, 23% for SO2) followed by passenger ships (20%, 17%, 25%), tankers (9%, 13%, 15%), general cargo (8%, 11%, 12%) and container ships (5%, 7%, 8%). In 2050, without arctic diversion routes, the total emissions of BC, NOx and SO2 are expected to change by +16%, −32% and −63%, respectively, compared to 2012. The results for fishing ships are the least certain, caused by a less precise engine power – sailing speed relation.

The calculated BC, SO2, and O3 surface concentrations and BC deposition contributions from ships are low as a mean for the whole Arctic in 2012, but locally BC additional contributions reach up to 20% around Iceland, and high additional contributions (100–300%) are calculated in some sea areas for SO2. In 2050, the arctic diversion routes highly influence the calculated surface concentrations and the deposition of BC in the Arctic. During summertime navigation contributions become very visible for BC (>80%) and SO2 (>1000%) along the arctic diversion routes, while the O3 (>10%) and BC deposition (>5%) additional contributions, respectively, get highest over the ocean east of Greenland and in the High Arctic.

The geospatial ship type specific emission results presented in this paper have increased the accuracy of the emission inventories for ships in the Arctic. The methodology can be used to estimate shipping emissions in other regions of the world, and hence may serve as an input for other researchers and policy makers working in this field.

Atmospheric Environment Volume 91, July 2014 / 2014
Go to paper