The importance of reliable battery energy storage systems (BESS) is key to the sustainability of many applications such as renewable power, smart grids, and electric vehicles (EVs). Due to decreasing cost and maturing technology, the Li-ion batteries are now widely used for grid-level storage, grid support for improved power quality, integration with photovoltaic systems, and EV applications. A Li-ion battery pack typically comprises Li-ion cells connected in a suitable combination of series and parallel structure. A battery management system (BMS) is required for charging and discharging, monitoring the current and voltage of each cell or string, battery protection, and temperature control. The system's reliability depends on the BESS reliability and is affected by many factors, including temperature, C-rate, DOD. This research aims to improve BESS reliability by using accurate lifetime modelling for various BMS and converter topologies to identify real-time BESS health and ensure reliability through a suitable control strategy. In particular, the reliability of the BESS for centralized, modularised, distributed, and decentralized topology will be explored along with its cost-reliability trade-off. I will focus on control strategies for optimizing BESS reliability for different applications.
Not yet published: Operations ResearchDepartment of Technology, Management and Economics
Reverse Logistics (RL) of end-of-use/end-of-life products has become a vital part of circular economy practices for manufacturers. However, significant quantities of resources are still landfilled instead of being recovered. With mounting pressure on businesses to address the sustainability crises (resources, climate change, waste, toxicity) on account of the take-make-dispose-based linear economy, companies today realise the importance of RL but face several barriers to implementing it, including a lack of knowledge. Although several studies have investigated different aspects of RL in various industries in different country settings, less attention has been devoted to developing a systematic and holistic approach for designing and implementing RL. To address these gaps, this paper reviews 116 scholarly articles published between 2011 and 2021 to identify attributes related to the design and implementation of RL systems. Based on a systematic literature review, a conceptual framework is presented covering the key activities, drivers and barriers, stakeholder engagement and performance management in RL. Such a framework can support companies evaluate different approaches and strategies, as well as the opportunities and challenges of designing and implementing RL and transitioning towards a Circular Economy.
The term ‘innovation ecosystem’ has become popular among stakeholders involved in innovation. The core idea is that innovation does not thrive through isolated actions of individual companies, but rather depends on a broad array of interrelated actors, institutions and policies. In this paper, we apply the concept of innovation ecosystems to ports by first providing a theoretical overview of its components and then comparing the efforts to build such an ecosystem in the port cities of Rotterdam and Valencia. Our main findings are as follows. First, the importance of innovation for the ability of ports to continue to create ‘value for society’ is widely acknowledged. Second, research and development (R&D) activities in both Rotterdam and Valencia are relatively limited and the dominant innovation challenge is the early application of new technologies developed outside the ports industry. Third, a ‘systemic approach’ is required to understand the innovation ecosystem in ports, given the strong interrelations among companies in the port and the need for broad coalitions to implement new technologies. Fourth and fifth, human capital formation and research cooperation, respectively, play a central role in improving the port innovation ecosystem. Finally, the ecosystem in Rotterdam is ‘distributed and connected’ while Valencia is more centralised.
In previous research, there have been more investigations on methanol blended with other fuels such as diesel, biodiesel, gasoline, etc., but fewer investigations on methanol with ignition additives as a mono-fuel. To better understand the methanol mono-fuel combustion characteristics and to further apply them, a combined experimental and simulation study of methanol in a Scania heavy-duty compression ignition (CI) engine was carried out in this work. The experiments consisted of four groups with variable injection timings, variable fraction of ignition additives, variable charge air temperatures, and variable overall excess air ratios/power sweeps. Heat release rate (HRR), cylinder pressure, ignition delay and indicated efficiency were analyzed for each case. The analysis showed that the combustion type was partially premixed combustion (PPC) in some cases and diesel-like combustion in the rest. By observing all cases, the shortest ignition delay was 14.1°, and the longest was 22.8°. The indicated efficiencies were in the range of 0.35 to 0.43. Simulations and validation analyses were performed for all cases by a multi-packets model. The physical and chemical ignition delays were predicted. The physical ignition delays were in the range of 4.25 to 8.10°, and the chemical ignition delays were in the range of 6.66 to 17.1°. The chemical ignition delay was always longer than the physical one. This indicates that chemical ignition delay has to be prioritized to improve the ignition performance of methanol fuel.
A practical estimation methodology of the mean added resistance in irregular waves is shown, and the present paper provides statistical analyses of estimates for ships in actual conditions. The study merges telemetry data of more than 200 in-service container vessels with ocean re-analysis data from ERA5. Theoretical estimates relying on spectral calculations of added resistance are made for both long- and short-crested waves and are based on a combination of a parametric expression for the wave spectrum and a semi-empirical formula for the added resistance transfer function. The theoretical estimates are compared to predictions from an indirect calculation of added resistance relying on shaft power measurements and empirical estimates of the remaining resistance components. Overall, the comparison reveals a bias in bow oblique waves and higher sea states of the spectral estimates as well as the large variance of the empirically derived predictions — particularly in beam-to-following waves. One of the study’s main findings, confirming previous studies but based on a much larger dataset than in earlier similar studies, is that added resistance assessment based on in-service data is complex due to significant associated uncertainties.
Ship engines are subject to a very demanding work environment, where maximum availability is a must. In this project we look at different operational variables of a marine engine from large cargo ships, with the aim of detecting and trending damage onset on different engine sub-components. This information can be used by owners to expedite O&M interventions and maximize ship availability.
Rotor dynamic force coefficients of gas seals strongly depend on the machine operational conditions. These force coefficients influence the overall dynamical response and modal properties of machines, consequently defining the machine vibration levels. Accurate estimations of the rotor dynamic coefficients are required for designing machines with low vibration amplifications and well-defined stability margins throughout the operational range. Experimental methods applied to test benches are used to validate such force coefficients and they normally rely on (i) the quality of the measurements and (ii) the assumption that the mathematical model is able to capture the whole system dynamics. If relevant dynamical contributions in a system are neglected by the mathematical model, the contribution will erroneously be concluded to originate from the seal being tested. The theoretical and experimental investigation in this paper focuses on quantifying and qualifying the effect of neglected system dynamics modelling on the estimation of seals force coefficients and stability margins. The in-situ identification of seal forces shows that the direct stiffness, cross-coupling stiffness, and direct damping coefficient estimations for a gas seal with high preswirl are statistically significantly affected by the baseline model. Nevertheless, the baseline model leads to small deviations of the seal force coefficient estimations. The prediction accuracy of stability margins is found to be more influenced by the baseline model describing the system dynamics than by the deviations between the seal force coefficient estimations.
Ammonia-fueled operation of solid oxide fuel cells is a promising alternative to their hydrogen-fueled operation. However, high ammonia decomposition rates at elevated operating temperatures of the solid oxide cells lead to a significant temperature drop at the stack inlet, causing increased thermal stresses. A multi-scale model is used in this study to investigate stack performance under direct feed and external pre-cracking of ammonia. Additionally, the effects of co- and counter-flow configurations, gas inflow temperatures, current density, and air flow rate on the stack performance under direct ammonia feed are examined. The simulation results show that for gas inlet temperatures above 750 °C, the power densities with direct feed and external cracking of ammonia differ by less than 5%. Moreover, it is indicated that the thermal stresses are lowest for the co-flow case, which decrease with decreasing gas inlet temperature and current density and with increasing air flow. Finally, this study shows that under practically applicable operating conditions, the risk of mechanical failure of the cells under direct ammonia feed operation is small.
Improving the power density of solid oxide fuel cell stacks would significantly enhance this technology for transportation. Using a monolithic structure to downsize the stack dimension offers a key to elevate the power density of solid oxide fuel cell stacks. This innovative design is promising but manufacturing is a challenge. The monolith is co-sintered in one firing step, and the gas channels are formed by burning off sacrificial organic materials. Structure distortion or fracture was observed in post-mortem investigations. In this work a multiscale, multiphysics modelling approach is proposed to describe and resolve this challenge in the debinding process occurring in a monolithic stack, i.e. the burning of organics and transportation of gases through the gradually opening microstructure, as well as the pressure build-up in the microstructure due to gas development. Simulation results show that a prominent pressure peak is experienced in the stack when a plasticiser (polyethylene glycol) and a pore-former (polymethyl methacrylate) are decomposed simultaneously. To reduce the high pressures, we investigate two possible strategies: (i) changing the mixture of organic additives; (ii) modifying the debinding temperature profile. Three tapes with different pore-formers are prepared, and the generated pressures during debinding of the three stacks are compared. The corresponding stack shapes after debinding are recorded. Numerical investigations show a good agreement with the post-mortem observations. By changing the composition of organics the distortion or fracturing of the stack can be avoided. Furthermore, to facilitate stack manufacturing, the high pressures can also be reduced by adjusting the heating rates and dwell temperatures of debinding. By using the new temperature profile suggested by the simulation study, the duration of debinding can also be reduced.