The safety of people and cargo onboard is a key functionality of a commercial ship.
The health and well-being of seafarers and passengers is protected through an extensive set of technical specifications, standards and norms that govern the design and commissioning of all vessels.
They differ by ship type and size, while the specific services to be provided and the specific geographic regions to be served also play an important role in this respect.
The requirements are of national and international character and vary also with the classification society that will commission the ship. Thus in a broader sense, all competences related to ship design are related one way or another to maritime health.
Much of the design of ships is overseen by a naval architect or marine engineer. It is rare to have the involvement of a medical professional except in the cruise industry.
Purpose and tasks
To ensure that the design of a ship includes the requirements to protect the health and well being of seafarers. More specifically, to identify areas of intervention that go beyond the usual engineering curricula where, nonetheless, the safety dimension is embedded through international standardization.
This chapter is about emergent safety hazards in engineering systems. These
hazards are those that emerge from a system without arising from any part of the
system alone, but because of interactions between parts. We distinguish two
approaches to analysing engineering systems: one is to view them as sociotechnical, and the other is to consider them as cyber-physical systems. We
illustrate a great deal of emergent hazardous behaviours and phenomena due to
unknown accident physics, malign actions, chemistry, and biology and due to
deficiencies in managements and organisations. The method that follows the
socio-technical view consists in the representation of a system by sequential
functionally unrelated processes that can in reality influence the performance of each other via sneak paths. The method that follows the cyber-physical systems
view focuses on the analysis of control loops (feedback, feedforward, positive,
and negative) and, especially, interrelated loops. The chapter explores also the
realm of security threats due to malign actions that can trigger safety-threatening events. And finally it gives general guidance for avoiding and eliminating safety hazards when designing engineering systems.
What is the role of the sea in globalized capitalism? In their new book Capitalism and the Sea: The Maritime Factor in the Making of the Modern World, Liam Campling and Alejandro Colás explore this question through a historical and geographical lens. In this book, the authors track the larger history of maritime commerce and pursue new understandings of the role of the sea in the global economy. In doing so, they illuminate the understudied maritime spaces, systems, and flows that underpin the global economy and create the foundations of global material circulation.
The year 2020 was largely defined by the unprecedented disruption caused by Covid-19 pandemic, which could have lasting adverse effects on every corners of human life. In the meanwhile, the pandemic has fundamentally changed the way of how industrial enterprises operate, empowering businesses to accelerate their digital transformation and reshaping their business models. Throughout the pandemic, shipping has been essential in terms of guaranteeing the global supply chain linkage and economic interdependency. As the world moves toward recovery, the maritime industry is also stepping up to the challenge and responds to these extraordinary disruptions. Against this background, a thorough, broader, and new review of maritime businesses will be particularly important.
According to the narratives transmitted through media and political discourse, climate change reduces the ice coverage in the Arctic and enhances shipping and other forms of maritime activities. Especially, expectations of an increasing level of transit shipping between Asian, especially Chinese, ports and ports in Europe and North America is dominant. Evidence, however, tells that the numbers of transit shipping through the Arctic Ocean are very limited, and dominated by European shipping companies. For Greenland, political expectations have also been high, since Greenland has been seen as "strategically" situated in relation to new shipping routes in the Arctic, But, again, the actual development has been moderate and not related to international transits but conditions in Greenland itself.
Traditionally, most ship hulls are optimized for ideal conditions, where the ships are sailing in calm water with full speed in full load. In the last decade, some ships have been designed for a range of draughts and speeds in calm water. However, there is still a large gap between the ideal conditions the ships are designed for and conditions (waves, wind, currents, hull roughness ets.) the ships will operate in. The target for the thesis is to develop accurate numerical models that can help ship designers narrow a part of this gap.
The main body of this thesis is three papers. The first papers compares the speed/power performance of full-scale CFD simulations, towing tank predictions, and high quality speed trial measurements from six sister vessels. Much research have been conducted comparing model- scale CFD with towing tank results. However, very few studies have compared full-scale CFD with speed trial measurements. The study includes both a ro-ro vessel and a general cargo vessel. The present study finds that including the hull and propeller roughness directly into the CFD simulations by modifying the wall-functions provides more accurate results than the traditional approach of estimating the effect of roughness using an empirical formula.
Today, most ships are designed for sailing in calm water. However, very few ships sail entirely in calm water. Before numerical simulations can be used to predict added resistance in waves and seakeeping responses, a systematic verification and validation is required to ensure the accuracy. The second paper presents such a systematic verification and validation for the KCS container ship in oblique waves. Five wave headings and six wavelengths are studied. The estimated spatial and temporal discretization errors are found by an extensive verification study to be less than 5 %. Results from the verified CFD model are compared with existing potential flow and CFD results from the literature, as well as up to three experimental data sets. The comparison shows that the present CFD results in general show significantly better agreement with the experiments than previously published CFD results.
This CFD set-up is used in the third paper to study how sailing in oblique regular waves influences the nominal wake field of the KCS ship. Five different headings are studied and the waves have a steepness of 1/60 and a wave length equal to the ship length. The present study finds that the studied incident waves make the nominal wake field highly transient. Especially the transient bilge vortex and shadow from the skeg have a significant influence on the nominal wake field. The results show that the nominal wake fraction fluctuates up to 39 % of the mean nominal wake fraction for the studied waves. The mean nominal wake fraction is higher than in calm water for all headings besides head sea waves. It is found that the stern quartering sea waves has the maximum mean nominal wake fraction, with a 16 % higher mean nominal wake fraction than in calm water. Finally the study finds that the modified advance angle on the r/R = 0.7 circle in the propeller plane varies 3.5 degrees more in stern quartering than in calm water. This increases the risk of cavitation leading to potential vibrations and loss of propulsive efficiency.
The three papers show that CFD simulations can deliver highly accuracy results, when the CFD simulations are set-up very carefully and systematic verification and validation are conducted. The results from the three papers shows that numerical simulations have a massive potential as useful tools when designing ships for the conditions, the ship will operate in.
The oceans are increasingly understood as a security space. Does the new maritime security agenda lead to new spatial configurations? This chapter introduces the concept of ‘pragmatic spaces’ to explore spatial configurations produced in responses to maritime security. Four exemplary spaces are discussed: how counter-piracy led to the development of high risk areas, how maritime security capacity building produced new regions constructed through codes of conduct, how the identification of smuggling routes established new forms of international partnerships, and how maritime domain awareness systems advance new transnational spaces of surveillance. These new spatial configurations were introduced to manage maritime security issues and enable transnational forms of governance.
This chapter concerns the digitalization of the maritime sector with a specific focus on business models. It is the argument of the article that current research in Maritime Informatics is focused on technological optimizations and thus lacks a commercial aspect in order to grasp the importance of digitalization in the shipping sector. In order to fill this gap a business model framework is suggested in the article with focus on the level of respectively customer-based-value-propositions and land versus sea. Then follows the empirical case of the Danish shipping company Norden and the development from 2015 to 2020. Norden is a leading commercial operator of dry bulk and product tanker vessels with more than 350 vessels in operation. The conclusion of the case is that Norden so far has regarded digitalization as tool for decision taking processes, which in the long-term should lead to compete advantages in terms of more efficient decisions based on big data and advanced algorithms. The shipping company has on the other hand decided not to use digitalization for the development of new software products and in accordance to presented digitalization matrix focused on indirect value proposition for the customers rather than direct customer-based initiatives. This focus confirms the hypothesis that digitalization in the dry bulk and tanker segment will often be based on indirect value propositions while digitalization in container-shipping might have a more direct relation to specific customer-based value propositions. This distinction is linked to the business-to-business nature of dry bulk and tanker and the more mixed business to business/business to consumer nature of container shipping—in. particular when the container shipping is integrated to the value chains and thus moved closer to the ultimate customers’ preferences and services.