Knowledge

Keyword: Waiting time

paper

A Swift Turnaround? Abating Shipping Greenhouse Gas Emissions via Port Call Optimization

Poulsen, René Taudal; Sampson, Helen

Waiting times for trucks, trains, airplanes and ships in service represent apparent transport system inefficiencies, and measures to reduce these may have the potential to abate transport GHG emissions. In international shipping, transportation researchers have pointed out that reduced waiting time in association with port calls holds such promise. We explore the potential for GHG abatement through port call optimization, focusing on crews and their employers - the shipping companies. Adding new empirical evidence to the transportation literature, we confirm the existence of idle time during port calls, and go beyond this in describing the causes for it. We show how several port stakeholders, including government officials, limit the crews’ and shipping companies’ room for maneuver in relation to port calls. We also show why the process of reducing waiting time in shipping is more complex than that for onshore transport modes, where real-time traffic information guides drivers’ route choices, and reduces congestion and waiting time. Our findings have implications for both policy makers and transportation research.

Transportation Research. Part D: Transport & Environment, Volume 86 / 2020
Go to paper
paper

‘Swinging on the Anchor’: The Difficulties in Achieving Greenhouse Gas Abatement in Shipping Via Virtual Arrival

Poulsen, René Taudal; Sampson, Helen

The abatement of greenhouse gas emissions represents a major global challenge and an important topic for transportation research. Several studies have argued that energy efficiency measures for virtual arrival and associated reduced anchorage time can significantly reduce emissions from ships by allowing for speed reduction on passage. However, virtual arrival is uncommon in shipping. In this paper, we examine the causes for waiting time for ships at anchor and the limited uptake of virtual arrival. We show the difficulties associated with the implementation of virtual arrival and explain why shipping is unlikely to achieve the related abatement potential as assumed by previous studies. Combining onboard observations with seafarers and interviews with both sea-staff and shore-based operational personnel we show how charterers’ commercial priorities outweigh the fuel saving benefits associated with virtual arrival. Moreover, we demonstrate how virtual arrival systems have unintended, negative consequences for seafarers in the form of fatigue. Our findings have implications for the IMO’s greenhouse gas abatement goals.

Transportation Research. Part D: Transport & Environment, Volume 73 / 2019
Go to paper