Keyword: Solid oxide fuel cell stack


Numerical performance analysis of solid oxide fuel cell stacks with internal ammonia cracking

Omid Babaie Rizvandi*, Arash Nemati, Hossein Nami, Peter Vang Hendriksen, Henrik Lund Frandsen

Ammonia-fueled operation of solid oxide fuel cells is a promising alternative to their hydrogen-fueled operation. However, high ammonia decomposition rates at elevated operating temperatures of the solid oxide cells lead to a significant temperature drop at the stack inlet, causing increased thermal stresses. A multi-scale model is used in this study to investigate stack performance under direct feed and external pre-cracking of ammonia. Additionally, the effects of co- and counter-flow configurations, gas inflow temperatures, current density, and air flow rate on the stack performance under direct ammonia feed are examined. The simulation results show that for gas inlet temperatures above 750 °C, the power densities with direct feed and external cracking of ammonia differ by less than 5%. Moreover, it is indicated that the thermal stresses are lowest for the co-flow case, which decrease with decreasing gas inlet temperature and current density and with increasing air flow. Finally, this study shows that under practically applicable operating conditions, the risk of mechanical failure of the cells under direct ammonia feed operation is small.

International Journal of Hydrogen Energy / 2023
Go to paper

Mitigating distortions during debinding of a monolithic solid oxide fuel cell stack using a multiscale, multiphysics model

Xing-Yuan Miao*, Stéven Pirou, Henrik Lund Frandsen

Improving the power density of solid oxide fuel cell stacks would significantly enhance this technology for transportation. Using a monolithic structure to downsize the stack dimension offers a key to elevate the power density of solid oxide fuel cell stacks. This innovative design is promising but manufacturing is a challenge. The monolith is co-sintered in one firing step, and the gas channels are formed by burning off sacrificial organic materials. Structure distortion or fracture was observed in post-mortem investigations. In this work a multiscale, multiphysics modelling approach is proposed to describe and resolve this challenge in the debinding process occurring in a monolithic stack, i.e. the burning of organics and transportation of gases through the gradually opening microstructure, as well as the pressure build-up in the microstructure due to gas development. Simulation results show that a prominent pressure peak is experienced in the stack when a plasticiser (polyethylene glycol) and a pore-former (polymethyl methacrylate) are decomposed simultaneously. To reduce the high pressures, we investigate two possible strategies: (i) changing the mixture of organic additives; (ii) modifying the debinding temperature profile. Three tapes with different pore-formers are prepared, and the generated pressures during debinding of the three stacks are compared. The corresponding stack shapes after debinding are recorded. Numerical investigations show a good agreement with the post-mortem observations. By changing the composition of organics the distortion or fracturing of the stack can be avoided. Furthermore, to facilitate stack manufacturing, the high pressures can also be reduced by adjusting the heating rates and dwell temperatures of debinding. By using the new temperature profile suggested by the simulation study, the duration of debinding can also be reduced.

Journal of the European Ceramic Society / 2023
Go to paper