Knowledge

Keyword: ship speed optimization

paper

Ship speed optimization considering ocean currents to enhance environmental sustainability in maritime shipping

Yang, Liqian; Chen, Gang; Zhao, Jinlou; Rytter, Niels Gorm Malý

Enhancing environmental sustainability in maritime shipping has emerged as an important topic for both firms in shipping-related industries and policy makers. Speed optimization has been proven to be one of the most effective operational measures to achieve this goal, as fuel consumption and greenhouse gas (GHG) emissions of a ship are very sensitive to its sailing speed. Existing research on ship speed optimization does not differentiate speed through water (STW) from speed over ground (SOG) when formulating the fuel consumption function and the sailing time function. Aiming to fill this research gap, we propose a speed optimization model for a fixed ship route to minimize the total fuel consumption over the whole voyage, in which the influence of ocean currents is taken into account. As the difference between STW and SOG is mainly due to ocean currents, the proposed model is capable of distinguishing STW from SOG. Thus, in the proposed model, the ship’s fuel consumption and sailing time can be determined with the correct speed. A case study on a real voyage for an oil products tanker shows that: (a) the average relative error between the estimated SOG and the measured SOG can be reduced from 4.75% to 1.36% across sailing segments, if the influence of ocean currents is taken into account, and (b) the proposed model can enable the selected oil products tanker to save 2.20% of bunker fuel and reduce 26.12 MT of CO2 emissions for a 280-h voyage. The proposed model can be used as a practical and robust decision support tool for voyage planners/managers to reduce the fuel consumption and GHG emissions of a ship

Sustainability 2020, 12(9), 3649 / 2020
Go to paper
book

Speed Optimization for Sustainable Shipping

Psaraftis, Harilaos N.

Among the spectrum of logistics – based measures for sustainable shipping, this chapter focuses on speed optimization. This involves the selection of an appropriate speed by the vessel, so as to optimize a certain objective. As ship speed is not fixed, depressed shipping markets and/or high fuel prices induce slow steaming which is being practised in many sectors of the shipping industry. In recent years the environmental dimension of slow steaming has also become important, as ship emissions are directly proportional to fuel burned. Win-win solutions are sought, but they will not necessarily be possible. The chapter presents some basics, discusses the main trade-offs and also examines combined speed and route optimization problems. Some examples are presented so as to highlight the main issues that are at play, and the regulatory dimension of speed reduction via speed limits is also discussed.

Book chapter in Sustainable shipping: A cross-disciplinary view / 2019
Go to book
paper

The profit maximizing liner shipping problem with flexible frequencies: logistical and environmental considerations

Giovannini, Massimo; Psaraftis, Harilaos N.

The literature on liner shipping includes many models on containership speed optimization, fleet deployment, fleet size and mix, network design and other problem variants and combinations. Many of these models, and in fact most models at the tactical planning level, assume a fixed revenue for the ship operator and as a result they typically minimize costs. This treatment does not capture a fundamental characteristic of shipping market behavior, that ships tend to speed up in periods of high freight rates and slow down in depressed market conditions. This paper develops a simple model for a fixed route scenario which, among other things, incorporates the influence of freight rates, along with that of fuel prices and cargo inventory costs into the overall decision process. The objective to be maximized is the line’s average daily profit. Departing from convention, the model is also able to consider flexible service frequencies, to be selected from a broader set than the standard assumption of one call per week. It is shown that this may lead to better solutions and that the cost of forcing a fixed frequency can be significant. Such cost is attributed either to additional fuel cost if the fleet is forced to sail faster to accommodate a frequency that is higher than the optimal one, or to lost income if the opposite is the case. The impact of the line’s decisions on CO2 emissions is also examined and illustrative runs of the model are made on three existing services.

Flexible Services and Manufacturing Journal, volume 31 / 2018
Go to paper
paper

Ship speed optimization: Concepts, models and combined speed-routing scenarios

Psaraftis, Harilaos N.; Kontovas, Christos A.

The purpose of this paper is to clarify some important issues as regards ship speed optimization at the operational level and develop models that optimize ship speed for a spectrum of routing scenarios in a single ship setting. The paper’s main contribution is the incorporation of those fundamental parameters and other considerations that weigh heavily in a ship owner’s or charterer’s speed decision and in his routing decision, wherever relevant. Various examples are given so as to illustrate the properties of the optimal solution and the various trade-offs that are involved.

Transportation Research Part C: Emerging Technologies, Volume 44 / 2014
Go to paper