Sensing data from vessel operations are of great importance in reflecting operational performance and facilitating proper decision-making. In this paper, statistical analyses of vessel operational data are first conducted to compare manual noon reports and autolog data from sensors. Then, new indicators to identify data aberrations are proposed, which are the errors between the reported values from operational data and the expected values of different parameters based on baseline models and relevant sailing conditions. A method to detect aberrations based on the new indicators in terms of the reported power is then investigated, as there are two independent measured power values. In this method, a sliding window that moves forward along time is implemented, and the coefficient of variation (CV) is calculated for comparison. Case studies are carried out to detect aberrations in autolog and noon data from a commercial vessel using the new indicator. An analysis to explore the source of the deviation is also conducted, aiming to find the most reliable value in operations. The method is shown to be effective for practical use in detecting aberrations, having been initially tested on both autolog and noon report from four different commercial vessels in 14 vessel years. Approximately one triggered period per vessel per year with a conclusive deviation source is diagnosed by the proposed method. The investigation of this research will facilitate a better evaluation of operational performance, which is beneficial to both the vessel operators and crew.