Keyword: Power-to-X


Power-to-X in energy hubs: A Danish case study of renewable fuel production

Ioannis Kountouris, Lissy Langer, Rasmus Bramstoft, Marie Münster, Dogan Keles

The European Commission recently proposed requirements for the production of renewable fuels as these are required to decarbonize the hard-to-electrify parts of the industrial and heavy transport sectors. Power-to-X (P2X) energy hubs enable efficient synergies between energy infrastructures, production facilities, and storage options. In this study, we explore the optimal operation of an energy hub by leveraging the flexibility of P2X, including hydrogen, methanol, and ammonia synthesizers by analyzing potential revenue streams such as the day-ahead and ancillary services markets. We propose EnerHub2X, a mixed-integer linear program that maximizes the hub’s profit based on current market prices, considering the technical constraints of P2X, such as unit commitment and non-linear efficiencies. We investigate a representative Danish energy hub and find that without price incentives, it mainly sells renewable electricity and produces compressed hydrogen. A sufficient amount of renewable ammonia and methanol is only produced by adding a price premium of about 50% (0.16 €/kg) to the conventional fuel prices. To utilize production efficiently, on-site renewable energy sources and P2X must be carefully aligned. We show that renewable power purchase agreements can provide flexibility while complying with the rules set by the European Commission.

Energy Policy / 2023
Go to paper

Onshore, offshore or in-turbine electrolysis? Techno-economic overview of alternative integration designs for green hydrogen production into Offshore Wind Power Hubs

Alessandro Singlitico*, Jacob Østergaard, Spyros Chatzivasileiadis

Massive investments in offshore wind power generate significant challenges on how this electricity will be integrated into the incumbent energy systems. In this context, green hydrogen produced by offshore wind emerges as a promising solution to remove barriers towards a carbon-free economy in Europe and beyond. Motivated by the recent developments in Denmark with the decision to construct the world's first artificial Offshore Energy Hub, this paper investigates how the lowest cost for green hydrogen can be achieved. A model proposing an integrated design of the hydrogen and offshore electric power infrastructure, determining the levelised costs of both hydrogen and electricity, is proposed. The economic feasibility of hydrogen production from Offshore Wind Power Hubs is evaluated considering the combination of different electrolyser placements, technologies and modes of operations. The results show that costs down to 2.4 EUR per kg can be achieved for green hydrogen production offshore, competitive with the hydrogen costs currently produced by natural gas. Moreover, a reduction of up to 13 pct. of the cost of wind electricity is registered when an electrolyser is installed offshore shaving the peak loads.

Renewable and Sustainable Energy Transition / 2021
Go to paper

Optimal placement of P-2-X facility in conjunction with Bornholm energy island: Preliminary overview for an immediate decarbonisation of maritime transport

Singlitico, Alessandro; Campion, Nicolas Jean Bernard; Münster, Marie; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio; Suo, Cathy Jingqing; Karlsson, Kenneth; Jørgensen, Torben; Waagstein, Jeppe Eimose ; Bendtsen, Maja F.

Bornholm plays a central role in the future offshore power expansion in the
Baltic Sea and as a node between future interconnections between countries. The
necessity to store/convert surplus power puts Bornholm in position to be the first
natural energy hub. Bornholm can be not only the centre for electrical equipment
such as substations but also a centre for P-2-X production from offshore wind power.
The production of electrofuels through P-2-X technologies can penetrate the
transport sector in Bornholm, the hardest to decarbonise, starting with the highspeed ferries to Ystad and Køge, which use in Rønne Havn as their base. The
needs to comply with existing and imminent stricter regulations create the
necessity for an immediate transition, before a fleet renewal. Therefore, this study
investigates the conversion of the hydrogen, produced using offshore wind
electricity, into methanol, whose use as a fuel is mature and does not require
substantial changes to the fleet.

Technical University of Denmark / 2020
Go to report