There is a gradual but clear transition towards a circular economy (CE) that will potentially have significant impacts on ports, both in their function as transport nodes and as locations for logistics and manufacturing activities. A rough appraisal of new investments in circular manufacturing activities in ports in Europe drawn from organizational reports and official webpages illustrates the (slow) development of circular activities in ports. This paper is to our knowledge the first paper which deals with the implications of CE for the business model of the port development company. We assess if and how the circularity transition affects the role and business model of port authorities as developers of port clusters. We outline a framework for analyzing the consequences of CE on the business model of the port authority. We then apply this framework to get a detailed understanding of the emerging CE ecosystem in the Port of Amsterdam, which is clearly a frontrunner in the transition, and the role of the government-owned Port of Amsterdam port development company (PoA) in developing this ecosystem. In Amsterdam, a CE 'business ecosystem' has emerged and continues to evolve with three types of synergies between the companies in this ecosystem: logistics infrastructure and services synergies, input-output synergies and industrial ecology synergies. We find that the spatial scale of the CE value chains in the port varies between segments and that they are generally less international than 'linear' value chains. The development of CE activities occupies a central place in PoA's strategy, and PoA assumes new and active roles in advancing the circular business ecosystem, most notably through developing industrial ecology synergies and nurturing and attracting new, innovative CE companies. Finally, the circularity transition leads to changes in PoA's business model, with an increasing focus on new services that create synergies, and a decreasing importance of the share of port dues in the total revenue mix.
This report provides a summary on the prospects for developing offshore logistics hubs and their evaluation as opportunities for the maritime and offshore industries. The report’s findings are based on respondents’ answers to surveys and focuses on when offshore logistic hubs will come into operation and their business potential. The data for this report is based on desk research and an analysis of survey responses. The report is produced by the PERISCOPE network.
This chapter assesses the role of state-owned enterprises (SOEs) in ports and shipping. Insights from regulatory economics are used to identify industry characteristics under which the SOE model is expected to be effective. With the use of these insights, characteristics of ports, terminals and shipping services that may lead to the establishment of SOEs are identified. The empirical overview of SOEs in shipping and ports shows a rather large use of SOEs, especially in container terminal operations and port development. The use of SOEs particularly in port development can be well understood with insights from regulatory economics. The majority of SOEs in ports, terminals and shipping are active internationally. This raises important additional research questions, most importantly regarding the strategic rationale of SOE internationalization and the role of geopolitical considerations in international activities.
The transition of the North Sea Region’s maritime and offshore industries toward a sustainable“Blue Growth” future is driven by incentives to unlock new growth areas, develop and apply new technologies, and increase productivity. The development and utilization of microgrids provides an opportunity to accomplish these goals. The rapid development in infrastructure and the trend toward the electrification of the seas has provided a context for growth, and microgrids pose a moduleto couple to existing infrastructure; a retrofit to improve the utilization of renewable energy sources. This report presents the outcome and analysis of a survey taken by 22 respondents. Respondents expect microgrids at large ports to emerge in 10 years and respondents rated the business potential at 3,77/5. Political factors are mentioned by most responses (40%), followed by social (30%), economic (16%), and technological factors (14%).
This report provides an assessment on the prospects for the microgrids at large ports. A survey has been developed to this end and has been evaluated by respondents to crowdsource a forecasted time horizon to implementation and its potential as an opportunity for the maritime and offshore industries. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.
Sustainable shipping involves not only ships but ports as their extension. This chapter examines the issues associated with a green port operation. These include technologies such as cold ironing; market-based practices such as differentiated fairway dues, speed reduction, and noise and dust abatement; and others. The legislative framework in various countries is explained, and various environmental scorecards are discussed. This chapter starts with a brief review on recent academic research in the field of environmental management of ports and presents the status quo in leading ports around the world. The chapter emphasizes on the implementation of speed reduction programmes near the port, the use of cold ironing at berth, and the effects of fuel quality regulation, considering the perspectives of the port authority and the ship operator. The emerging environmental and economic trade-offs are discussed. The aim of this chapter is to be a starting point for researchers seeking to work on green ports. Insights of this chapter may also be useful for stakeholders seeking to select the best emissions reduction option depending on their unique characteristics.
Cold ironing is the process of providing shorepower to cover the energy demands of ships calling at ports. This technological solution can eliminate the emissions of auxiliary engines at berth, resulting in a global reduction of emissions if the grid powering the ships is an environmentally friendly energy source. This paper conducts a literature review of recent academic work in the field and presents the status of this technology worldwide and the current barriers for its further implementation. The use of cold ironing is mandatory in Californian ports for ship operators and as a result terminal and ship operators were required to invest in this technology. In Europe, all ports will be required to have cold ironing provision by the end of 2025. Other regulations that target local emissions such as Emission Control Areas can have a significant impact on whether cold ironing is used in the future as a potential compliance solution. This paper constructs a quantitative framework for the examination of the technology considering all stakeholders. The role of regulation is shown to be critical for the further adoption of this technology. Illustrative case studies are presented that consider the perspective of ship operators of various ship types, and terminal operators that opt to invest in shorepower facilities. The results of the case studies show that for medium and high fuel price scenarios there is economic motivation for ship operators to use cold ironing. For the port, the cost per abated ton of pollutants is much lower than current estimates of the external costs of pollutants. Therefore, shorepower may be a viable emissions reduction option for the maritime sector, provided that regulatory bodies assist the further adoption of the technology from ship operators and ports. The methodology can be useful to port and ship operators in examining the benefits of using cold ironing as an emissions reduction action.
The ongoing shift toward a circular economy, in which end-of-life (EOL) products are reused, remanufactured, or recycled, has major implications for seaports, especially seaports in metropolitan areas, as in such areas, huge amounts of EOL products are available. Ports are therefore relevant locations for circular economy activities. This chapter identifies the main commodities in volume terms and the set of associated activities and assesses resulting opportunities and threats for ports. Case studies of Dutch ports are used to illustrate this analysis.
Ports are crucial hubs in the functioning of the global economy, and maritime transport is a major emitter of air pollutants. Ports have considerable potential for promoting environmental upgrading in maritime transport and along global value chains more generally, but so far have been only partially successful in doing so. We examine results, limitations and future potential of voluntary initiatives that have been carried out by selected European and North American port authorities, which are considered frontrunners in environmental management. Drawing from the insights of global value chain analysis and organizational theory, we find that low ‘tool implementation complexity’ and high ‘issue visibility’ concerning emissions are key facilitators of environmental upgrading. We suggest that ports can intervene in two main ways to improve the environmental performance of maritime transport beyond their organizational and physical boundaries: by lowering tool implementation complexity through stronger collaboration within global value chains; and by enhancing emission visibility through alliances with cargo-owners and regulators.