Benchmarking the energy efficiency of ships is not a straightforward task, mainly due to the diversity of operations. Although driving cycles have been used for decades in evaluating the performance of road vehicles, these do not exist in formal policy-making for maritime transport. This work builds on a previously proposed methodology. It uses noon reports of 327 vessels for 2019 to construct operational cycles for seven size classes of container ships using the main engine power as the main parameter. Concerning the main engine emissions, the resulting cycles reduce variation in the carbon intensity indicator values by more than 30% while maintaining an average accuracy of 97.7% in absolute emissions. These figures show that the concept can improve operational carbon intensity indicators in terms of robustness and their technical counterparts in optimizing ship design. The paper also proposes further work required for benchmarking applications in policy-making.
The International Maritime Organization (IMO) has recently adopted short-term measures introducing technical standards for existing ships and a labeling system reflecting their operational carbon intensity. This paper investigates the relevant techno-economic implications from a shipowner's perspective and estimates the effect of six compliance options on six sample containerships. The study applies a new evidence-based bottom-up approach, and the results show that compliance, when possible, is not straightforward and costly. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times (up to 793.92 h/year), which can be prohibitive. The option favors older ships with oversized engines as its effectiveness is mainly determined by the main engine load profile. In general, the effectiveness of the measures is not without limits, particularly concerning older ships and those that have already installed several options. Solutions such as market-based measures and alternative fuels, classed by IMO as medium- and long-term measures, must be considered soon.
Global warming and, correspondingly, reducing CO2 emissions is one of the most challenging tasks the world faces today. The maritime industry contributed to 2.89% of the global anthropogenic CO2 emissions. To decrease this share, the International Maritime Organization (IMO) defined, among others, the goal to reduce the carbon intensity of international shipping by 40% until 2030. In this context, the short-term measures recently adopted, in the form of a technical standard (Energy Efficiency Existing Ship Index, EEXI) and a rating scheme based on an operational indicator (Carbon Intensity Indicator, CII), mark a crucial step to achieving the mentioned goal. In addition, the EU Commission has recently introduced the FuelEU Maritime Initiative limiting the annual greenhouse gas (GHG) intensity of a ship’s energy use incorporating a reduction occurring in a five-year rhythm between 2025 and 2050. The paper investigates the practical options availed to existing containerships of different sizes and technological vintages for meeting the specific EEXI, CII, and GHG intensity reduction requirements imposed by the regulations. The investigation will be based on the actual technical and operational profiles of six sample ships and will consider a set of possible compliance options including, but not limited to, engine power limitation, waste heat recovery system, variable frequency drives, and virtual arrival. The data used originates from noon reports of existing containerships provided by a European industry leader. The ship-specific CO2 emission reduction potentials required for the impact assessment result from either literature or actual data-based calculations. Financial data is used for investigating the economic impact of the reduction requirements. Conclusions drawn include an operational advantage that pre-EEDI ships enjoy when applying engine power limitation (EPL) for EEXI compliance, the occurrence of payback periods exceeding ship lifetimes, and an estimate of the effect that onshore power supply can have on complying with the FuelEU Maritime Initiative.
The International Maritime Organization (IMO) has recently adopted short-term measures introducing technical standards for existing ships and a labeling system reflecting their operational carbon intensity. This paper investigates the relevant techno-economic implications from a shipowner's perspective and estimates the effect of six compliance options on six sample containerships. The study applies a new evidence-based bottom-up approach, and the results show that compliance, when possible, is not straightforward and costly. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times (up to 793.92 h/year), which can be prohibitive. The option favors older ships with oversized engines as its effectiveness is mainly determined by the main engine load profile. In general, the effectiveness of the measures is not without limits, particularly concerning older ships and those that have already installed several options. Solutions such as market-based measures and alternative fuels, classed by IMO as medium- and long-term measures, must be considered soon.
Maritime transport carries around 80% of the world’s trade. It is key to the economic development of many countries, it is a source of income in many countries, and it is considered as a safe and environment friendly mode of transport. Given its undisputed importance, a question is what does the future hold for maritime transport. This chapter is an attempt to answer this question by mainly addressing the drive to decarbonize shipping, along with related challenges as regards alternative low carbon or zero carbon marine fuels. The important role of maritime policy making as a main driver for change is also discussed. Specifically, if maritime transport is to drastically change so as to meet carbon emissions reduction targets, the chapter argues, among other things, that a substantial bunker levy would be the best (or maybe the only) way to induce technological changes in the long run and logistical measures (such as slow steaming) in the short run. In the
long run this would lead to changes in the global fleet towards vessels and technologies that are more energy efficient, more economically viable and less dependent on fossil fuels than those today. In that sense, it would have the potential to drastically alter the face of maritime transport in the future. However, as things stand, and mainly for political reasons, the chapter also argues that the adoption of such a measure is considered as rather unlikely.
The International Ballast Water Management (BWM) Convention entered into force in September 2017. In the convention, the International Maritime Organization (IMO) required two options: ballast water exchange (BWE) standard D-1, and ballast water performance standard D-2 which required ballast water treatment systems (BWTSs). We explored the impact of policy on the utilization of BWTSs by examining IMO Type Approval records and country-level databases in the United States and Australia. In December 2018, 65 BWTSs had IMO Type Approval and 13 had US Coast Guard approval. The majority of vessels with BWTSs had either electrolytic or UV treatment systems (Australia, 84%; USA, 89%). From 2016 to 2017, both countries experienced an increase in the percentage of vessels with BWTS, vessels utilizing BWTS, and total ballast discharge treated with BWTS. Based on this analysis, shipowners appear to primarily rely on two treatment technologies in Australia and the United States to meet compliance.
This report presents the results of Activity 3.2-2 of the Scandria®2Act project. It investigates the sensitivity of the Ro-Ro services along the Scandria® corridor to fuel cost fluctuations, anticipates the adverse effects of a possible fuel price hike and discusses potential mitigating measures.
Among the 77 Ro-Ro services that include at least one direct connection between two Baltic ports, the Finland-Germany connections were selected for further examination mainly because this is where the ScanMed and NSB core network corridors meet providing two major alternatives, each of which offer at least two options. In terms of abatement options available to the Ro-Ro operators, the study considers only the switching from Heavy Fuel Oil (HFO) to the compliant but more expensive Marine Gas Oil (MGO), which happens to be the only feasible solution in the short-run that does not require a substantial capital investment.
The study deployed two different approaches in meeting its objectives. The first one looked at the problem from the macro-level perspective and the analysis was based on aggregate annual statistics of the ports serving the Finland-Germany connections. A multiple regression model estimated the sensitivity of cargo flows to fuel price fluctuations. Although most of the cargo volumes exhibit a statistically significant sensitivity to fuel price, in all cases this is below 1.0, indicating a rather inelastic
behaviour. The results show that an increase in fuel price penalises the volume of lorries on the longdistance Helsinki-Germany route in favour of the shorter Helsinki-Tallinn and Hanko-Germany options. The trailer (unaccompanied) traffic exhibit a different behaviour that might relate to the pricing policies of the Ro-Ro operators in relation to this market segment.
This article discusses the development of second ship registers and their interconnections to the policy idea of maritime clusters. Through a narrative of the contemporary history of Danish maritime policy, the article shows how these apparently different policy measures were closely related and together constitute a coherent framework based upon specific values, views of cause–effect relationships, and perceptions of major challenges and their context. Danish maritime policy provides an excellent case for the study of the contemporary history of maritime policy-making. Denmark was among the first of the traditional shipping nations to set up a second register, and the concept of maritime clusters became part of Danish maritime policy before it emerged as a construct in European Union maritime policy. We provide detail on the unfolding of some of the most important recent events in Danish maritime policy and highlight its development as a process of learning that involves the prolonged drafting and fine-tuning of statements and ideas, and the borrowing and adjustment of policy ideas developed elsewhere.
The aim of this article is to illustrate the most important changes in the regulatory framework of the shipping sector from the 1960s to 2010, and to analyse the basis for, and effects of, these changes. In order to explain how the transformation has occurred, we use two traditional maritime nations—Denmark and Norway—as case studies. First, we introduce the two regimes of Danish and Norwegian shipping: ‘the national regime’ from the early 1960s to the mid-1970s; and ‘the competitive regime’, which was fully established by the middle of the 1990s and still persists. Then, we briefly sketch the bargaining that accompanied the shift from the national regime to the competitive regime. Specifically, we show that the new regime primarily accommodated the interests of private actors such as shipping companies, rather than the interests of the authorities and the trade unions.