The introduction of Marine Non-Indigenous Species (NIS) poses a significant threat to global marine biodiversity and ecosystems. To mitigate this risk, the Ballast Water Management Convention (BWMC) was adopted by the UN International Maritime Organisation (IMO), setting strict criteria for discharges of ballast water. However, the BWMC permits exemptions for shipping routes operating within a geographical area, known as a Same-Risk-Area (SRA). An SRA can be established in areas where a risk assessment (RA) can conclude that the spread of NIS via ballast water is low relative to the predicted natural dispersal. Despite the BWMC's requirement for RAs to be based on modelling of the natural dispersal of NIS, no standard procedures have been established. This paper presents a methodology utilizing biophysical modelling and marine connectivity analyses to conduct SRA RA and delineation. Focusing on the Kattegat and Øresund connecting the North Sea and Baltic Sea, we examine two SRA candidates spanning Danish and Swedish waters. We provide an example on how to conduct an RA including an RA summary, and addressing findings, challenges, and prospects. Our study aims to advance the development and adoption of consistent, transparent, and scientifically robust SRA assessments for effective ballast water management.
The BBNJ Agreement will affect legal frameworks for the conservation of marine biological diversity in various regions of the world ocean and the marine Arctic is no exception. As biological diversity in the marine Arctic is particularly vulnerable, the implications of the BBNJ Agreement for the conservation of biological diversity in the marine Arctic deserves serious consideration. Of particular note is the procedure for an environmental impact assessment (EIA). Given that damage to the environment may be irreversible, it is a prerequisite to conduct an EIA before authorizing planned activities, with a view to preventing environmental harm. An EIA constitutes a crucial element in the conservation of the marine environment, including biological diversity. Hence, this article examines the potential implications of the procedure for an EIA as set out under the BBNJ Agreement for the conservation of biological diversity in the marine Arctic beyond national jurisdiction.
Seafarers and fishers have inequity in health at work, with a higher risk of having metabolic syndrome. They are at increased risk of developing prediabetes, which can be reversed to normoglycemia based on the evidence from other industries. This study aims to educate and activate seafarers and fishermen with the support of coaches to reverse their prediabetes to stop the further development of diabetes type 2.
Methods
Random samples of seafarers and fishermen with newly diagnosed prediabetes and HbA1c levels ranging from 5.7%-6.4% from the maritime medical health examinations constitute the study population in a 16-week prediabetes coaching program. In addition to monthly Zoom meetings, they are asked to provide weekly reports via questionnaires on personal measurements and improvements in physical activity and diets.
Results
The preliminary data from 2 maritime clinics (n=405) show prevalences of prediabetes 18.8%, 36.4%, and 49.2% in the ages 20-29, 30-49, and 50+ years respectively, all p-values < 0.02.
Analysis of the clinical data from the maritime health clinics and the questionnaires from the seafarers collected weekly will formulate the effect of the intervention. Summarizing data from various national prediabetes coaching fora will be the evidence base for remission of prediabetes.
Conclusions
A significant portion of seafarers have prediabetes with the potential to achieve remission of their pre-diabetes by eating healthy and being physically active. The goals are to lose at least 5%–7% of their starting weight, be accustomed to doing at least 150 min. of physical activity weekly, and follow a pre-diabetes-relevant dietary plan.
Gathering real-world high-quality data from underwater environments is cost-intensive, as is labeling this data for machine learning. Given this, synthetic data represents a possible solution that delivers ground-truth training data. Nevertheless, rendering and modeling of underwater environments are challenging due to several factors, including attenuation, scattering, and turbidity. The focus of this study is on the creation of a simulated underwater environment constructed for the purposes of simulating marine growth on offshore structures. The main requirement is the creation of renderings of sufficient quality and quantity with respect to the representation of marine-species distribution and intra-class variation, and sufficiently accurate recreation of lighting and turbidity (Jerlov water type) conditions underwater. Underwater rendering has been implemented using Blender, with marine growth from 2D/3D scanned and hand-modelled entities combined with a CAD model of an actual offshore installation. The proposed approach provides for the generation of synthetic images usable for training computer vision models in marine-growth inspection applications as well as other related underwater applications. This has been demonstrated in a case study, wherein the utility of the rendered dataset has been briefly demonstrated in a neural network marine-growth segmentation task. The produced renderings are available as a dataset of 1038 scene renders, using varying poses and randomized representative marine growth; each render includes RGB images, ground-truth segmentation masks, water-free RGB images, and depth information. In future work, the expansion with additional species and objects in other oceanic and coastal environments is envisioned.
Non-indigenous species (NIS) pose a major threat to biodiversity and the functioning and services of ecosystems. Despite their rapid spread in coastal waters worldwide, biotic invasions are widely disregarded in marine conservation planning. To guide conservation actions, a better understanding of the underlying mechanisms determining the success of NIS are therefore needed. Here we develop a combined modelling approach to identify the key drivers and community assembly processes determining the occurrence of invasive benthic invertebrates, using Danish coastal waters as a case study. To reflect factors affecting the introduction, establishment and spread of NIS throughout the area, we compiled long-term monitoring data on NIS, as well as information on commercial shipping, environmental conditions and estimates of larvae settling densities derived from drift model simulations informed by species traits. We then applied a set of species distribution models to identify the key drivers determining the occurrence of NIS. Our results demonstrate a significant positive effect of vessel activity, a negative effect of depth and bottom salinity, as well as a positive effect of the simulated settling densities on the probability of presence. Taken together, our results highlight the role of commercial shipping, habitat characteristics and passive advection of early-life stages on the presence of NIS. Our combined modelling approach provide improved process understanding on the key community assembly processes determining the presence of NIS and may serve to guide monitoring, management and conservation planning in order to limit future invasions and their negative consequences on coastal ecosystems.
Rapporter fra flere globale miljøinstitutioner, her
-
under den internationale science-policy platform
om biodiversitet og økosystemtjenester (herefter
IPBES), understreger behovet for genopretning af
økosystemer (1,2). Den seneste globale IPBES-rap
-
port fra maj 2019 peger således på, at forringelser
af økosystemer på land og i havet underminerer
livsgrundlaget for 3,2 milliarder mennesker. Gen
-
opretning bliver fremhævet som en af de vigtig
-
ste handlemuligheder for effektivt at begrænse
tabet af biodiversitet og forbedre livsgrundlaget
for os mennesker ved at imødegå forringelser for
en række økosystemtjenester. Det nuværende årti
2021-2030 er af UNEP udpeget til årtiet for genop
-
retning med det formål at genetablere ødelagte
eller forarmede økosystemer verden over.
IPBES rapporterne dokumenterer, at biodiversi
-
tetskrisen er en altomfattende og global udfor
-
dring, og at krisen er på linje med klimakrisen. De
tiltagende klimaændringer er ligeledes en af ho
-
vedårsagerne til tab af biodiversitet (2). Der er af
hensyn til begge kriser behov for, at der beskyttes
og genetableres velfungerende og uforstyrrede
økosystemer. Der bør derfor ske en national ud
-
møntning af resultaterne fra de internationale aftaler baseret på den bedst tilgængelige viden.