Keyword: Logistics


Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms

Stålhane, Magnus; Halvorsen-Weare, Elin Espeland; Nonås, Lars Magne; Pantuso, Giovanni

This paper considers the problem of determining the optimal vessel fleet to support maintenance operations at an offshore wind farm. We propose a two-stage stochastic programming (SP) model of the problem where the first stage decisions are what vessels to charter. The second stage decisions are how to support maintenance tasks using the chartered vessels from the first stage, given uncertainty in weather conditions and the occurrence of failures. To solve the resulting SP model we perform an ad-hoc Dantzig–Wolfe decomposition where, unlike standard decomposition approaches for SP models, parts of the second stage problem remain in the master problem. The decomposed model is then solved as a matheuristic by apriori generating a subset of the possible extreme points from the Dantzig–Wolfe subproblems. A computational study in three parts is presented. First, we verify the underlying mathematical model by comparing results to leading work from the literature. Then, results from in-sample and out-of-sample stability tests are presented to verify that the matheuristic gives stable results. Finally, we exemplify how the model can help offshore wind farm operators and vessel developers improve their decision making processes.

European Journal of Operational Research, Volume 276, Issue 2 / 2019
Go to paper

Optimization in liner shipping

Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research.

4OR volume 15 / 2017
Go to paper

A survey on maritime fleet size and mix problems

Pantuso, Giovanni; Fagerholt, Kjetil; Hvattum, Lars Magnus

This paper presents a literature survey on the fleet size and mix problem in maritime transportation. Fluctuations in the shipping market and frequent mismatches between fleet capacities and demands highlight the relevance of the problem and call for more accurate decision support. After analyzing the available scientific literature on the problem and its variants and extensions, we summarize the state of the art and highlight the main contributions of past research. Furthermore, by identifying important real life aspects of the problem which past research has failed to capture, we uncover the main areas where more research will be needed.

European Journal of Operational Research, Volume 235, Issue 2 / 2014
Go to paper