The International Maritime Organization (IMO) is a specialized United Nations (UN) agency regulating maritime transport. One of the very hot topics currently on the IMO agenda is decarbonization. In that regard, the IMO decided in 2018 to achieve by 2050 a reduction of at least 50% in maritime green house gas (GHG) emissions vis-à-vis 2008 levels. The purpose of this paper is to discuss the possible role of Market Based Measures (MBMs) so as to achieve the above target. To that effect, a brief discussion of MBMs at the IMO and the EU is presented, and a possible way forward is proposed, focusing on a bunker levy.
The 0.1% sulphur limit within Sulphur Emission Control Areas (SECA) has made compulsory the use of either pricier ultra-low sulphur fuel, or the installation of abatement technologies that require significant capital investments. Due to the unexpectedly low fuel prices, Ro-Ro operators have been able to cope with the new sulphur limits, but recent research has shown that if fuel prices increase some Ro-Ro services may face the risk of closure. This paper proposes three key performance indicators (KPIs) to enable the asssessment of the impact of SECAs on Ro-Ro shipping. The KPIs are used on a set of case studies for services of a leading European Ro-Ro operator, and allow benchmarking of a series of operational and policy measures that aim to reverse the negative impacts of SECAs. The operational measures consider speed reduction, new sailing frequency, fleet reconfiguration, as well as investments in abatement technologies. Policy measures include the options of either subsidizing shippers or ship operators, or alternatively introducing new taxes on landbased options. The KPIs can be useful to ship operators seeking to improve the resilience of their network, as well as to regulatory bodies designing new environmental policies and understanding any negative implications these may have on ship operators.
The international Maritime Organization (IMO) Weather Criterion has proven to be the governing stability criteria regarding minimum metacentric height for e.g., small ferries and large passenger ships. The formulation of the Weather Criterion is based on some empirical relations derived many years ago for vessels not necessarily representative for current new buildings with large superstructures. Thus, it seems reasonable to investigate the possibility of capsizing in beam sea under the joint action of waves and wind using direct time domain simulations. This has already been done in several studies. Here, it is combined with the first order reliability method (FORM) to define possible combined critical wave and wind scenarios leading to capsize and corresponding probability of capsize. The FORM results for a fictitious vessel are compared with Monte Carlo simulations, and good agreement is found at a much lesser computational effort. Finally, the results for an existing small ferry will be discussed in the light of the current weather criterion.
In an effort to reduce the environmental impacts of maritime transportation, the International Maritime Organization (IMO) designated special Sulphur Emission Control Areas (SECAs) where ships are required to use low-sulphur fuel. In January 2015, the sulphur limit within SECAs was lowered to 0.1%, which can only be achieved if vessels are using pricier ultra-low sulphur fuel, or invest in abatement technologies. The increased operating costs borne by Ro-Ro operators in SECAs due to the stricter limits can result in the shutting down of some routes and a redistribution of cargo flows with land-based alternatives. The exact repercussions of the new sulphur limits are difficult to identify in the wake of significant recent reductions of the fuel prices for both low-sulphur and heavy fuel oil. This paper presents a modal split model that estimates modal shifts vis-a-vis competing maritime and land-based modes available to shippers. This allows examining the implications of the recent low prices to modal choice, and the influence a potential increase in fuel prices may have. The model is applied to seven routes affected by the regulation based on data from a leading European Ro-Ro operator. Sensitivity analyses on market share data, cargo values, freight rates, and haulers rates are conducted. Emissions inventories are constructed to assess the environmental efficacy of the SECA regulation. The novelty of the proposed model lies in the examination of the ex-post implications of shutting down a service and the redistribution of transport. Recommendations to mitigate and reverse the negative side-effects of such environmental legislation are proposed.
The purpose of this chapter is to introduce the concept of Market Based Measures (MBMs) to reduce Green House Gas (GHG) emissions from ships, and review several distinct MBM proposals that have been under consideration by the International Maritime Organization (IMO). The chapter discusses the mechanisms used by MBMs, and explores how the concept of the Marginal Abatement Cost (MAC) can be linked to MBMs. It also attempts to discuss the pros and cons of the submitted proposals.
Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated in most countries around the world, much of the attention in recent years has focused on maritime transport. The attention mainly stems from the fact that in marine fuels the percentage of sulphur can be very high: it can be as high as 4.5 % in Heavy Fuel Oil (HFO), which is the fuel typically used in all deep-sea trades. Even though the amounts of SOx produced by ships are substantially lower than CO2, SOx emissions are highly undesirable as they cause acid rain and undesirable health effects in humans and animals. To mitigate these adverse environmental effects, the international shipping community has taken substantial policy measures. With the introduction of new limits for the content of sulphur in marine fuels in Northern European and North American sea areas, short-sea companies operating in these areas will face substantial additional cost. As of 1/1/2015, international regulations stipulate, among other things, a 0.1 % limit in the sulphur content of marine fuels, or equivalent measures limiting the percent of SOx emissions to the same amount. As low-sulphur fuel is substantially more expensive than HFO, there is little or no room within these companies current margins to absorb such additional cost, and thus significant price increases must be expected. Unlike its deep-sea counterpart, in short-sea shipping such a freight rate increase may induce shippers to use land-based alternatives (mainly road). A reverse shift of cargo would go against the EU policy to shift traffic from land to sea to reduce congestion, and might ultimately (under certain circumstances) increase the overall level of CO2 emissions along the entire supply chain. The purpose of this chapter is to investigate the potential effect of sulphur regulations on the share of cargo transported by the waterborne mode vis-à-vis land-based alternative
Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated in most countries around the world, much of the attention in recent years has focused on maritime transport. The attention mainly stems from the fact that in marine fuels the percentage of sulphur can be very high: it can be as high as 4.5 % in Heavy Fuel Oil (HFO), which is the fuel typically used in all deep-sea trades. Even though the amounts of SOx produced by ships are substantially lower than CO2, SOx emissions are highly undesirable as they cause acid rain and undesirable health effects in humans and animals. To mitigate these adverse environmental effects, the international shipping community has taken substantial policy measures. With the introduction of new limits for the content of sulphur in marine fuels in Northern European and North American sea areas, short-sea companies operating in these areas will face substantial additional cost. As of 1/1/2015, international regulations stipulate, among other things, a 0.1%limit in the sulphur content of marine fuels, or equivalent measures limiting the percent of SOx emissions to the same amount. As low-sulphur fuel is substantially more expensive than HFO, there is little or no room within these companies current margins to absorb such additional cost, and thus significant price increases must be expected. Unlike its deep-sea counterpart, in short-sea shipping such a freight rate increase may induce shippers to use landbased alternatives (mainly road). A reverse shift of cargo would go against the EU policy to shift traffic from land to sea to reduce congestion, and might ultimately (under certain circumstances) increase the overall level of CO2 emissions along the entire supply chain. The purpose of this chapter is to investigate the potential effect of sulphur regulations on the share of cargo transported by the waterborne mode vis-à-vis land-based alternatives.
Maritime shipping is the transmission belt of the global economy. It is also a major contributor to global environmental change through its under-regulated air, water and land impacts. It is puzzling that shipping is a lagging sector as it has a well-established global regulatory body—the International Maritime Organization. Drawing on original empirical evidence and archival data, we introduce a four-factor framework to investigate two main questions: why is shipping lagging in its environmental governance; and what is the potential for the International Maritime Organization to orchestrate emerging private ‘green shipping’ initiatives to achieve better ecological outcomes? Contributing to transnational governance theory, we find that conditions stalling regulatory progress include low environmental issue visibility, poor interest alignment, a broadening scope of environmental issues, and growing regulatory fragmentation and uncertainty. The paper concludes with pragmatic recommendations for the International Maritime Organization to acknowledge the regulatory difficulties and seize the opportunity to orchestrate environmental progress.
Policy emphasis in ship design must be shifted away from global and idealized towards regional based and realistic vessel operating conditions. The present approach to reducing shipping emissions through technical standards tends to neglect how damages and abatement opportunities vary according to location and operational conditions. Since environmental policy originates in damages relating to ecosystems and jurisdictions, a three-layered approach to vessel emissions is intuitive and practical. Here, we suggest associating damages and policies with ports, coastal areas possibly defined as Emission Control Areas (ECA) as in the North Sea and the Baltic, and open seas globally. This approach offers important practical opportunities: in ports, clean fuels or even electrification is possible; in ECAs, cleaner fuels and penalties for damaging fuels are important, but so is vessel handling, such as speeds and utilization. Globally we argue that it may be desirable to allow burning very dirty fuels at high seas, due to the cost advantages, the climate cooling benefits, and the limited ecosystem impacts. We quantify the benefits and cost savings from reforming current IMO and other approaches towards environmental management with a three-layered approach, and argue it is feasible and worth considering.