The hybrid combination of hydrogen fuel cells (FCs) and batteries has emerged as a promising solution for efficient and eco-friendly power supply in maritime applications. Yet, ensuring high-quality and cost-effective energy supply presents challenges. Addressing these goals requires effective coordination among multiple FC stacks, batteries, and cold-ironing. Although there has been previous work focusing it, the unique maritime load characteristics, variable cruise plans, and diverse fuel cell system architectures introduce additional complexities and therefore worth to be further studied. Motivated by it, a two-layer energy management system (EMS) is presented in this paper to enhance shipping fuel efficiency. The first layer of the EMS, executed offline, optimizes day-ahead power generation plans based on the vessel's next-day cruises. To further enhance the EMS's effectiveness in dynamic real-time situations, the second layer, conducted online, dynamically adjusts power splitting decisions based on the output from the first layer and instantaneous load information. This dual-layer approach optimally exploits the maritime environment and the fuel cell features. The presented method provides valuable utility in the development of control strategies for hybrid powertrains, thereby enabling the optimization of power generation plans and dynamic adjustment of power splitting decisions in response to load variations. Through comprehensive case studies, the effectiveness of the proposed EMS is evaluated, thereby showcasing its ability to improve system performance, enhance fuel efficiency (potential fuel savings of up to 28%), and support sustainable maritime operations.
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050, we find that offshore hydrogen generation may likely only play a limited role, and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions, which result in deep decarbonisatiton of the energy system towards 2050, hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage, this is the most cost-effective solution to satisfy future hydrogen demand. Overall, we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system, but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
Massive investments in offshore wind power generate significant challenges on how this electricity will be integrated into the incumbent energy systems. In this context, green hydrogen produced by offshore wind emerges as a promising solution to remove barriers towards a carbon-free economy in Europe and beyond. Motivated by the recent developments in Denmark with the decision to construct the world's first artificial Offshore Energy Hub, this paper investigates how the lowest cost for green hydrogen can be achieved. A model proposing an integrated design of the hydrogen and offshore electric power infrastructure, determining the levelised costs of both hydrogen and electricity, is proposed. The economic feasibility of hydrogen production from Offshore Wind Power Hubs is evaluated considering the combination of different electrolyser placements, technologies and modes of operations. The results show that costs down to 2.4 EUR per kg can be achieved for green hydrogen production offshore, competitive with the hydrogen costs currently produced by natural gas. Moreover, a reduction of up to 13 pct. of the cost of wind electricity is registered when an electrolyser is installed offshore shaving the peak loads.
This report provides an assessment on the prospects for offshore energy hubs. Four use cases have been developed and evaluated by respondents in a survey instrument for their forecasted time horizon to implementation and their business potential as opportunities for the maritime and offshore
industries. The report is produced by the PERISCOPE Group at Aarhus University for the PERISCOPE network.
For more than a century, conventional marine vessels spatter the atmosphere with CO2 emissions and detrimental particles when operated by diesel motors/generators. Fuel cells have recently emerged as one of the most promising emission-free technologies for the electrification of ship propulsion systems. In fuel cell-based ship electrification, the entire marine power system is viewed as a direct current (DC) microgrid (MG) with constant power loads (CPLs). A challenge of such settings is how to stabilize the voltages and currents of the ship’s grid. In this paper, we propose a new modified backstepping controller to stabilize the MG voltage and currents. Finally, to study the performance and efficiency of our proposal, we run an experiment simulation using dSPACE real-time emulator.
This study concerns nitrogen based emissions from a hydrogen enriched ammonia fueled SI engine. These emissions deserve special attention as their formation may differ from conventional HC combustion due to the nitrogen content in the fuel. A range of experiments are conducted with a single cylinder 0.612 l CFR engine with a compression ratio varying from 7 to 15 using a fuel composition of 80 vol% NH3 and 20 vol% H2. Wet exhaust samples are analysed with an FT-IR. Emission measurements reveal that nitric oxide stem from other reaction paths than the dissociation of molecular nitrogen. This causes the NO emissions to peak around 35% rather than 10% excess air, as is typical in HC fueled SI-engines. However the magnitude of NO emissions are comparable to that of measurements conducted with gasoline due to lower flame temperatures. Nitrogen dioxide levels are higher when comparing with gasoline, but has a relatively low share of the total NOx emissions (3–4%). Nitrous oxide is a product of NH2 reacting with NO2 and NH reacting with NO. The magnitude is largely affected by ignition timing due to the temperature development during expansion and the amount of excess air, as increased oxygen availability stimulates the formation of the NH2 radical and the levels of NO2 are higher. Under ideal operating conditions (MBT ignition timing) N2O levels are very low. The dominating contributors to unburned ammonia are chamber crevices as the magnitude of these emissions is greatly affected by the compression ratio. However, levels are lower than required in order to eliminate all NOx emissions with a SCR catalyst.