Knowledge

Keyword: Fuels

report

MarE-fuel: Energy efficiencies in synthesising green fuels and their expected cost, MarE-fuel project report 9/9-2021, DTU Energy

Hossein Nami, Giacomo Butera, Nicolas Jean Bernard Campion, Henrik Lund Frandsen, Peter Vang Hendriksen

Several replacement fuel to today’s fossil based ship propulsion fuels have been addressed in MarEfuel. Key ones are; pyrolysis oil (blend in fuel), methanol and ammonia. These were singled out among many possible fuels from a preliminary analysis that indicated that they could play a key role in fulfilling the emission targets set politically and by the sector in the most cost effective manner. In the following they shall be treated in turn in some detail. Costs of several “blue” fuels have also been assessed. The projected costs are used in other parts of the MarEfuel project (e.g. for assessing the total cost of ownership).

Technical University of Denmark / 2021
Go to report
report

MarE-Fuel: ROADMAP for sustainable maritime fuels

Sebastian Marco Franz, Sara Shapiro-Bengtsen, Nicolas Jean Bernard Campion, Martijn Backer, Marie Münster

This report is a background report to the MarE-Fuel project financed by the Maritime Fund and the Lauritzen Fund. Partners of the project has been DTU, Anker Invest, Mærsk Line, Copenhagen Economics, OMT and DFDS. In the report, potential decarbonization roadmaps or pathways for the maritime industry are presented, as well as the methodology of deriving them. Different future fuels and their emissions are highlighted. In addition, biomass availability plays an essential role in climate mitigation efforts towards net-zero by 2050, and thus we examined different biomass availability scenarios alongside greenhouse-gas emissions cap scenarios. The assumptions related to the underlying emissions can be found in the first chapter of the report. Besides the underlying emissions for a decarbonized maritime industry, the ship stock and the underlying transport demand play an essential role for a future decarbonized maritime industry. In the second chapter of the report, we address this issue by explaining how ship stock and shipping demand have been incorporated into the model. Finally, we present the optimization ship stock model developed to generate roadmap scenarios. We show the objective function and the underlying constraints of the model. The results of this work are presented and discussed. We also show some sensitivity analysis, which will shed light on the relevant parameters for the futureof the maritime industry. Our main findings can be found in the end of the report.

Technical University of Denmark / 2021
Go to report