Knowledge

Keyword: freight rate

paper

Container freight rate forecasting with improved accuracy by integrating soft facts from practitioners

Schramm, Hans-Joachim; Haque Munim, Ziaul

This study presents a novel approach to forecast freight rates in container shipping by integrating soft facts in the form of measures originating from surveys among practitioners asked about their sentiment, confidence or perception about present and future market development. As a base case, an autoregressive integrated moving average (ARIMA) model was used and compared the results with multivariate modelling frameworks that could integrate exogenous variables, that is, ARIMAX and Vector Autoregressive (VAR). We find that incorporating the Logistics Confidence Index (LCI) provided by Transport Intelligence into the ARIMAX model improves forecast performance greatly. Hence, a sampling of sentiments, perceptions and/or confidence from a panel of practitioners active in the maritime shipping market contributes to an improved predictive power, even when compared to models that integrate hard facts in the sense of factual data collected by official statistical sources. While investigating the Far East to Northern Europe trade route only, we believe that the proposed approach of integrating such judgements by practitioners can improve forecast performance for other trade routes and shipping markets, too, and probably allows detection of market changes and/or economic development notably earlier than factual data available at that time.

Research in Transportation Business & Management / 2021
Go to paper
paper

Being Green on Sulphur: Targets, Measures and Side-Effects

Kontovas, Christos A.; Panagakos, George; Psaraftis, Harilaos N.; Stamatopoulou, Eirini

Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated in most countries around the world, much of the attention in recent years has focused on maritime transport. The attention mainly stems from the fact that in marine fuels the percentage of sulphur can be very high: it can be as high as 4.5 % in Heavy Fuel Oil (HFO), which is the fuel typically used in all deep-sea trades. Even though the amounts of SOx produced by ships are substantially lower than CO2, SOx emissions are highly undesirable as they cause acid rain and undesirable health effects in humans and animals. To mitigate these adverse environmental effects, the international shipping community has taken substantial policy measures. With the introduction of new limits for the content of sulphur in marine fuels in Northern European and North American sea areas, short-sea companies operating in these areas will face substantial additional cost. As of 1/1/2015, international regulations stipulate, among other things, a 0.1 % limit in the sulphur content of marine fuels, or equivalent measures limiting the percent of SOx emissions to the same amount. As low-sulphur fuel is substantially more expensive than HFO, there is little or no room within these companies current margins to absorb such additional cost, and thus significant price increases must be expected. Unlike its deep-sea counterpart, in short-sea shipping such a freight rate increase may induce shippers to use land-based alternatives (mainly road). A reverse shift of cargo would go against the EU policy to shift traffic from land to sea to reduce congestion, and might ultimately (under certain circumstances) increase the overall level of CO2 emissions along the entire supply chain. The purpose of this chapter is to investigate the potential effect of sulphur regulations on the share of cargo transported by the waterborne mode vis-à-vis land-based alternative

Green Transportation Logistics. International Series in Operations Research & Management Science, vol 226 / 2016
Go to paper
book

Being green on sulphur: Targets, measures and side-effects

Kontovas, Christos A.; Panagakos, George; Psaraftis, Harilaos N.; Stamatopoulou, Eirini

Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated in most countries around the world, much of the attention in recent years has focused on maritime transport. The attention mainly stems from the fact that in marine fuels the percentage of sulphur can be very high: it can be as high as 4.5 % in Heavy Fuel Oil (HFO), which is the fuel typically used in all deep-sea trades. Even though the amounts of SOx produced by ships are substantially lower than CO2, SOx emissions are highly undesirable as they cause acid rain and undesirable health effects in humans and animals. To mitigate these adverse environmental effects, the international shipping community has taken substantial policy measures. With the introduction of new limits for the content of sulphur in marine fuels in Northern European and North American sea areas, short-sea companies operating in these areas will face substantial additional cost. As of 1/1/2015, international regulations stipulate, among other things, a 0.1%limit in the sulphur content of marine fuels, or equivalent measures limiting the percent of SOx emissions to the same amount. As low-sulphur fuel is substantially more expensive than HFO, there is little or no room within these companies current margins to absorb such additional cost, and thus significant price increases must be expected. Unlike its deep-sea counterpart, in short-sea shipping such a freight rate increase may induce shippers to use landbased alternatives (mainly road). A reverse shift of cargo would go against the EU policy to shift traffic from land to sea to reduce congestion, and might ultimately (under certain circumstances) increase the overall level of CO2 emissions along the entire supply chain. The purpose of this chapter is to investigate the potential effect of sulphur regulations on the share of cargo transported by the waterborne mode vis-à-vis land-based alternatives.

Book chapter in Psaraftis H. (eds) Green Transportation Logistics. International Series in Operations Research & Management Science / 2016
Go to book
paper

An investigation of forecast horizon and observation fit’s influence on an econometric rate forecast model in the liner shipping industry

Nielsen, Peter; Jiang, Liping; Rytter, Niels Gorm Malý; Chen, Gang

This paper evaluates the influence of forecast horizon and observation fit on the robustness and performance of a specific freight rate forecast model used in the liner shipping industry. In the first stage of the research, a forecast model used to predict container freight rate development is presented by exploring the relationship between individual company’s rates and aggregated market rates, and thus assists in dealing with uncertainty and market volatility for a given business situation. In the second stage, a design of experiment approach is applied to highlight the influence of the forecast horizon and observation fit and their interactions on the forecast model’s performance. The results underline the complicated nature of creating a suitable forecast model by balancing business needs, a desire to fit a good model and achieve high accuracy. There is strong empirical evidence from this study; that a robust model is preferable, that overfitting is a true danger, and that a balance must be achieved between forecast horizon and the number of observations used to fit the model. In addition, methodological guidance has also been provided on how to test, design, and choose the superior model for business needs.

Maritime policy and management, Vol. 41, Iss. 7, 2014-11-10 / 2014
Go to paper