Knowledge

Keyword: Experimental

paper

Techno-economic assessment of upgraded pyrolysis bio-oils for future marine fuels

Antoine Letoffet, Nicolas Campion*, Moritz Böhme, Claus Dalsgaard Jensen, Jesper Ahrenfeldt, Lasse Røngaard Clausen

Power-to-X plants can generate renewable power and convert it into hydrogen or more advanced fuels for hard-to-abate sectors like the maritime industry. Using the Bornholm Energy Island in Denmark as a study case, this study investigates the off-grid production e-bio-fuel as marine fuels. It proposes a production pathway and an analysis method of the oil with a comparison with e-methanol. Production costs, optimal operations and system sizing are derived using an open-source techno-economic linear programming model. The renewable power source considered is a combination of solar photovoltaic and off-shore wind power. Both AEC and SOEC electrolyzer technologies are assessed for hydrogen production. The bio-fuel is produced by slow pyrolysis of straw pellet followed by an upgrading process: hydrodeoxygenation combined with decarboxylation. Due to its novelty, the techno-economic parameters of the upgraded pyrolyzed oil are derived experimentally. Experimental results highlight that the upgrading reaction conditions of 350 °C for 2h with one step of 1h at 150 °C, under 200 bars could effectively provide a fuel with a sufficient quality to meet maritime fuel specifications. It requires a supply of 0.014 kg H2/kgbiomass. Modeling results shows that a small scale plant constrained by the local availability of and biomass producing 71.5 GWh of fuel per year (13.3 kton of methanol or 7.9 kton of bio-fuel), reaches production costs of 54.2 €2019/GJmethanol and 19.3 €2019/GJbio-fuel. In a large scale facility, ten times larger, the production costs are reduced to 44.7 €2019/GJmethanol and 18.9 €2019/GJbio-fuel (scaling effects for the methanol pathway). Results show that, when sustainable biomass is available in sufficient quantities, upgraded pyrolysis oil is the cheapest option and the less carbon intensive (especially thanks to the biochar co-product). The pyrolysis unit represents the main costs but co-products revenues such as district heat sale and biochar as a credit could decrease the costs by a factor three.

Energy Conversion and Management / 2024
Go to paper
paper

Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine

Westlye, Fredrik R.; Ivarsson, Anders; Schramm, Jesper

This study concerns nitrogen based emissions from a hydrogen enriched ammonia fueled SI engine. These emissions deserve special attention as their formation may differ from conventional HC combustion due to the nitrogen content in the fuel. A range of experiments are conducted with a single cylinder 0.612 l CFR engine with a compression ratio varying from 7 to 15 using a fuel composition of 80 vol% NH3 and 20 vol% H2. Wet exhaust samples are analysed with an FT-IR. Emission measurements reveal that nitric oxide stem from other reaction paths than the dissociation of molecular nitrogen. This causes the NO emissions to peak around 35% rather than 10% excess air, as is typical in HC fueled SI-engines. However the magnitude of NO emissions are comparable to that of measurements conducted with gasoline due to lower flame temperatures. Nitrogen dioxide levels are higher when comparing with gasoline, but has a relatively low share of the total NOx emissions (3–4%). Nitrous oxide is a product of NH2 reacting with NO2 and NH reacting with NO. The magnitude is largely affected by ignition timing due to the temperature development during expansion and the amount of excess air, as increased oxygen availability stimulates the formation of the NH2 radical and the levels of NO2 are higher. Under ideal operating conditions (MBT ignition timing) N2O levels are very low. The dominating contributors to unburned ammonia are chamber crevices as the magnitude of these emissions is greatly affected by the compression ratio. However, levels are lower than required in order to eliminate all NOx emissions with a SCR catalyst.

Fuel, Volume 111 / 2013
Go to paper