Knowledge

Keyword: Emissions reduction

paper

Benefit of speed reduction for ships in different weather conditions

Taskar, Bhushan; Andersen, Poul

Currently, the shipping industry is facing a great challenge of reducing emissions. Reducing ship speeds will reduce the emissions in the immediate future with no additional infrastructure. However, a detailed investigation is required to verify the claim that a 10% speed reduction would lead to 19% fuel savings (Faber et al., 2012).

This paper investigates fuel savings due to speed reduction using detailed modeling of ship performance. Three container ships, two bulk carriers, and one tanker, representative of the shipping fleet, have been designed. Voyages have been simulated by modeling calm water resistance, wave resistance, propulsion efficiency, and engine limits. Six ships have been simulated in various weather conditions at different speeds. Potential fuel savings have been estimated for a range of speed reductions in realistic weather.

It is concluded that the common assumption of cubic speed-power relation can cause a significant error in the estimation of bunker consumption. Simulations in different seasons have revealed that fuel savings due to speed reduction are highly weather dependent. Therefore, a simple way to include the effect of weather in shipping transport models has been proposed.

Speed reduction can lead to an increase in the number of ships to fulfill the transport demand. Therefore, the emission reduction potential of speed reduction strategy, after accounting for the additional ships, has been studied. Surprisingly, when the speed is reduced by 30%, fuel savings vary from 2% to 45% depending on ship type, size and weather conditions. Fuel savings further reduce when the auxiliary engines are considered.

Transportation Research Part D: Transport and Environment, Volume 85 / 2020
Go to paper
paper

Decarbonization of maritime transport: to be or not to be?

Psaraftis, Harilaos N.

International shipping is at a crossroads as regards decarbonization. The Paris climate change agreement in 2015 (COP21) was hailed by many as a most significant achievement. Others were less enthusiastic, and more recently American President Trump decided to take the U.S. out of the agreement. Four years earlier, the International Maritime Organization (IMO) had adopted the most sweeping piece of regulation pertaining to maritime greenhouse gas (GHG) reduction, in the name of the Energy Efficiency Design Index (EEDI). In addition, one year after COP21, the IMO adopted a mandatory data collection system for fuel consumption of ships and agreed on an initial strategy and roadmap on the reduction of GHG emissions from ships. This paper takes a critical look at the above and other recent developments and focuses on the challenges faced by the industry if a path to significant CO2 reductions is to be successful. Difficulties and opportunities are identified, and the paper conjectures that the main obstacles are neither technical nor economic, but political.

Maritime Economics & Logistics, volume 21 / 2019
Go to paper
paper

Prospects of cold ironing as an emissions reduction option

Zis, Thalis

Cold ironing is the process of providing shorepower to cover the energy demands of ships calling at ports. This technological solution can eliminate the emissions of auxiliary engines at berth, resulting in a global reduction of emissions if the grid powering the ships is an environmentally friendly energy source. This paper conducts a literature review of recent academic work in the field and presents the status of this technology worldwide and the current barriers for its further implementation. The use of cold ironing is mandatory in Californian ports for ship operators and as a result terminal and ship operators were required to invest in this technology. In Europe, all ports will be required to have cold ironing provision by the end of 2025. Other regulations that target local emissions such as Emission Control Areas can have a significant impact on whether cold ironing is used in the future as a potential compliance solution. This paper constructs a quantitative framework for the examination of the technology considering all stakeholders. The role of regulation is shown to be critical for the further adoption of this technology. Illustrative case studies are presented that consider the perspective of ship operators of various ship types, and terminal operators that opt to invest in shorepower facilities. The results of the case studies show that for medium and high fuel price scenarios there is economic motivation for ship operators to use cold ironing. For the port, the cost per abated ton of pollutants is much lower than current estimates of the external costs of pollutants. Therefore, shorepower may be a viable emissions reduction option for the maritime sector, provided that regulatory bodies assist the further adoption of the technology from ship operators and ports. The methodology can be useful to port and ship operators in examining the benefits of using cold ironing as an emissions reduction action.

Transportation Research Part A: Policy and Practice, Volume 119 / 2019
Go to paper
paper

Marine diesel engine control to meet emission requirements and maintain maneuverability

Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars; Vejlgaard-Laursen, Morten

International shipping has been reported to account for 13% of global NOx emissions and 2.1% of global green house gas emissions. Recent restrictions of NOx emissions from marine vessels have led to the development of exhaust gas recirculation (EGR) for large two-stroke diesel engines. Meanwhile, the same engines have been downsized and derated to optimize fuel efficiency. The smaller engines reduce the possible vessel acceleration, and to counteract this, the engine controller must be improved to fully utilize the physical potential of the engine. A fuel index limiter based on air/fuel ratio was recently developed (Turbo, 2016), but as it does not account for EGR, accelerations lead to excessive exhaust smoke formation which could damage the engine when recirculated.

This paper presents two methods for extending a fuel index limiter function to EGR engines. The methods are validated through simulations with a mean-value engine model and on a vessel operating at sea. Validation tests compare combinations of the two index limiter methods, using either traditional PI control for the EGR loop or the recently developed fast adaptive feedforward EGR control (Nielsen et al., 2017a). The experiments show that the extended limiters reduce exhaust smoke formation during acceleration to a minimum, and that the suggested limiter, combined with adaptive feedforward EGR control, is able to maintain full engine acceleration capability. Sea tests with engine speed steps from 35 to 50 RPM, made peak exhaust opacity increase by only 5% points when using the proposed limiter, whereas it increased 70% points without the limiter.

Control Engineering Practice, Volume 76 / 2018
Go to paper
paper

Environmental Balance of Shipping Emissions Reduction Strategies

Zis, Thalis; North, Robin Jacob; Angeloudis, Panagiotis

Maritime shipping is regarded as the most efficient mode of transport; however, its contribution to climate change through greenhouse gas emissions and the health issues related to shipping activity near residential centers cannot be neglected. In recent years, the efforts of regulators, ship operators, and port authorities have led to actions for ship emissions reduction to improve shipping's environmental performance. This work builds on an activity-based methodology that allows the estimation of emissions and examines environmental effects of slow steaming, fuel regulations, near-port speed-reduction schemes, and cold ironing. Pollutant emissions of carbon dioxide, sulfur dioxide, nitrogen oxides, and black carbon are modeled. A linear programming model minimizes fuel consumption through speed differentiation on a shipping line's routes based on fuel costs and binding regulations in each segment of the journey. Although the examined emissions-reduction actions may have a positive regional environmental effect by cutting emissions, it is possible that additional emissions are generated elsewhere because of increased sailing speeds beyond regulated areas. Trade-offs between pollutants are observed for reduction actions that may have a positive effect on some emission species but at the same time result in additional particulate matter and black carbon emissions. The presented framework allows key actors to conduct comprehensive studies and design improved emissions reduction actions with fewer negative impacts in other areas.

Transportation Research Record, 2015;2479(1) / 2015
Go to paper
paper

Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports

Zis, Thalis; North, Robin Jacob; Angeloudis, Panagiotis; Ochieng, Washington Yotto; Bell, Michael Geoffrey Harrison

Different port operating policies have the potential to reduce emissions from shipping; however, their efficacy varies for different ports. This article extends existing literature to present a consistent and transferable methodology that examines emissions reduction port policies based on ship-call data. Carbon dioxide (CO2); sulphur dioxide (SO2); nitrogen oxides (NOx); and black carbon (BC) emissions from near-port containership activities are estimated. Two emissions reduction policies are considered for typical container terminals. Participation of all calling vessels with a speed reduction scheme can lead to reductions of 8–20 per cent, 9–40 per cent and 9–17 per cent for CO2, SO2 and NOx, respectively. However, speed reduction policies may increase BC emissions by up to 10 per cent. Provision of Alternative Marine Power (AMP) for all berthing vessels can reduce in-port emissions by 48–70 per cent, 3–60 per cent, 40–60 per cent and 57–70 per cent for CO2, SO2, NOx and BC, respectively. The analysis shows that emissions depend on visiting fleet, berthing durations, baseline operating pattern of calling ships, sulphur reduction policies in force and the emissions intensity of electricity supply. The potential of emissions reduction policies varies considerably across ports making imperative the evaluation and prioritization of such policies based on the unique characteristics of each port and each vessel.

Maritime Economics & Logistics, volume 16 / 2014
Go to paper