Keyword: Emission


Optimizing Sulfur Emission Control Areas for Shipping

Lu Zhen, Dan Zhuge, Shuaian Wang, Harilaos N. Psaraftis

The design of emission control areas (ECAs), including ECA width and sulfur limits, plays a central role in reducing sulfur emissions from shipping. To promote sustainable shipping, we investigate an ECA design problem that considers the response of liner shipping companies to ECA designs. We propose a mathematical programming model from the regulator’s perspective to optimize the ECA width and sulfur limit, with the aim of minimizing the total sulfur emissions. Embedded within this regulator’s model, we develop an internal model from the shipping liner’s perspective to determine the detoured voyage, sailing speed, and cargo transport volume with the aim of maximizing the liner’s profit. Then, we develop a tailored hybrid algorithm to solve the proposed models based on the variable neighborhood search meta-heuristic and a proposition. We validate the effectiveness of the proposed methodology through extensive numerical experiments and conduct sensitivity analyses to investigate the effect of important ECA design parameters on the final performance. The proposed methodology is then extended to incorporate heterogeneous settings for sulfur limits, which can help regulators to improve ECA design in the future.

Transportation Science / 2024
Go to paper

MarE-Fuel: ROADMAP for sustainable maritime fuels

Sebastian Marco Franz, Sara Shapiro-Bengtsen, Nicolas Jean Bernard Campion, Martijn Backer, Marie Münster

This report is a background report to the MarE-Fuel project financed by the Maritime Fund and the Lauritzen Fund. Partners of the project has been DTU, Anker Invest, Mærsk Line, Copenhagen Economics, OMT and DFDS. In the report, potential decarbonization roadmaps or pathways for the maritime industry are presented, as well as the methodology of deriving them. Different future fuels and their emissions are highlighted. In addition, biomass availability plays an essential role in climate mitigation efforts towards net-zero by 2050, and thus we examined different biomass availability scenarios alongside greenhouse-gas emissions cap scenarios. The assumptions related to the underlying emissions can be found in the first chapter of the report. Besides the underlying emissions for a decarbonized maritime industry, the ship stock and the underlying transport demand play an essential role for a future decarbonized maritime industry. In the second chapter of the report, we address this issue by explaining how ship stock and shipping demand have been incorporated into the model. Finally, we present the optimization ship stock model developed to generate roadmap scenarios. We show the objective function and the underlying constraints of the model. The results of this work are presented and discussed. We also show some sensitivity analysis, which will shed light on the relevant parameters for the futureof the maritime industry. Our main findings can be found in the end of the report.

Technical University of Denmark / 2021
Go to report