The design of emission control areas (ECAs), including ECA width and sulfur limits, plays a central role in reducing sulfur emissions from shipping. To promote sustainable shipping, we investigate an ECA design problem that considers the response of liner shipping companies to ECA designs. We propose a mathematical programming model from the regulator’s perspective to optimize the ECA width and sulfur limit, with the aim of minimizing the total sulfur emissions. Embedded within this regulator’s model, we develop an internal model from the shipping liner’s perspective to determine the detoured voyage, sailing speed, and cargo transport volume with the aim of maximizing the liner’s profit. Then, we develop a tailored hybrid algorithm to solve the proposed models based on the variable neighborhood search meta-heuristic and a proposition. We validate the effectiveness of the proposed methodology through extensive numerical experiments and conduct sensitivity analyses to investigate the effect of important ECA design parameters on the final performance. The proposed methodology is then extended to incorporate heterogeneous settings for sulfur limits, which can help regulators to improve ECA design in the future.
International initiatives have successfully brought down the emissions, and hence also the related negative impacts on environment and human health, from shipping in Emission Control Areas (ECAs). However, the question remains as to whether increased shipping in the future will counteract these emission reductions. The overall goal of this study is to provide an up-to-date view on future ship emissions and provide a holistic view on atmospheric pollutants and their contribution to air quality in the Nordic (and Arctic) area. The first step has been to set up new and detailed scenarios for the potential developments in global shipping emissions, including different regulations and new routes in the Arctic. The scenarios include a Baseline scenario and two additional SOx Emission Control Areas (SE-CAs) and heavy fuel oil (HFO) ban scenarios. All three scenarios are calculated in two variants involving Business-AsUsual (BAU) and High-Growth (HiG) traffic scenarios. Additionally a Polar route scenario is included with new ship traffic routes in the future Arctic with less sea ice. This has been combined with existing Current Legislation scenarios for the land-based emissions (ECLIPSE V5a) and used as input for two Nordic chemistry transport models (DEHM and MATCH). Thereby, the current (2015) and future (2030, 2050) air pollution levels and the contribution from shipping have been simulated for the Nordic and Arctic areas. Population exposure and the number of premature deaths attributable to air pollution in the Nordic area have thereafter been assessed by using the health assessment model EVA (Economic Valuation of Air pollution). It is estimated that within the Nordic region approximately 9900 persons died prematurely due to air pollution in 2015 (corresponding to approximately 37 premature deaths for every 100 000 inhabitants). When including the projected development in both shipping and land-based emissions, this number is estimated to decrease to approximately 7900 in 2050. Shipping alone is associated with about 850 premature deaths during presentday conditions (as a mean over the two models), decreasing to approximately 600 cases in the 2050 BAU scenario. Introducing a HFO ban has the potential to lower the number of cases associated with emissions from shipping to approximately 550 in 2050, while the SECA scenario has a smaller impact. The "worst-case" scenario of no additional regulation of shipping emissions combined with a high growth in the shipping traffic will, on the other hand, lead to a small increase in the relative impact of shipping, and the number of premature deaths related to shipping is in that scenario projected to be around 900 in 2050. This scenario also leads to increased deposition of nitrogen and black carbon in the Arctic, with potential impacts on environment and climate.
As policy makers acknowledge the high degree of supply chain vulnerability and the impact of maritime emissions on coastal population health, there has been a consistent effort to strengthen maritime security and environmental regulations. In recent years, overdependence on deeper and wider multinational supply and production chains and lean-optimization has led to tightly integrated systems with little “slack” and high sensitivity to disruptions.
This study considers the impact of Emission Control Areas and establishes a link between environmental and network resilience performance for maritime supply chains using operational cost and SOx emissions cost metrics. The proposed methodological framework analyzes various abatement options, disruption intensities, fuel pricing instances and regulatory strategies. The methodology utilizes a minimum cost flow assignment and an arc velocity optimization model for vessel speed to establish the payoff for various network states. Additionally, an attacker defender game is set up to identify optimal regulatory strategies under various disruption scenarios. The results are complemented by a sensitivity analysis on SOx emissions pricing, to better equip policy makers to manage environmental and resilience legislation. The methodology and findings provide a comprehensive analytic approach to optimize maritime supply chain performance beyond minimisation of operational costs, to also minimize exposure to costly supply chain disruptions.