Knowledge

Keyword: COLREGs representation

paper

Anticipation of ship behaviours in multi-vessel scenarios

Dimitrios Papageorgiou*, Nicholas Hansen, Kjeld Dittmann, Mogens Blanke

Highly reliable situation awareness is a main driver to enhance safety via autonomous technology in the marine industry. Groundings, ship collisions and collisions with bridges illustrate the need for enhanced safety. Authority for a computer to suggest actions or to take command, would be able to avoid some accidents where human misjudgement was a core reason. Autonomous situation awareness need be conducted with extreme confidence to let a computer algorithm take command. The anticipation of how a situation can develop is by far the most difficult step in situation awareness, and anticipation is the subject of this article. The IMO International Regulations for Preventing Collisions
at Sea (COLREGS), describe the regulatory behaviours of marine vessels relative to each other, and correct interpretation of situations is instrumental to safe navigation. Based on a breakdown of COLREGS rules, this article presents a framework to represent manoeuvring behaviours that are expected when all vessels obey the rules. The article shows how nested finite automata can segregate situation assessment from decision making and provide a testable and repeatable algorithm. The suggested method makes it possible to anticipate own ship and other vessels’ manoeuvring in a multi-vessel scenario. The framework is validated using scenarios from a full-mission simulator.

Ocean Engineering / 2022
Go to paper
paper

Anticipation of ship behaviours in multi-vessel scenarios

Dimitrios Papageorgiou*, Nicholas Hansen, Kjeld Dittmann, Mogens Blanke

Highly reliable situation awareness is a main driver to enhance safety via autonomous technology in the marine industry. Groundings, ship collisions and collisions with bridges illustrate the need for enhanced safety. Authority for a computer to suggest actions or to take command, would be able to avoid some accidents where human misjudgement was a core reason. Autonomous situation awareness need be conducted with extreme confidence to let a computer algorithm take command. The anticipation of how a situation can develop is by far the most difficult step in situation awareness, and anticipation is the subject of this article. The IMO International Regulations for Preventing Collisions
at Sea (COLREGS), describe the regulatory behaviours of marine vessels relative to each other, and correct interpretation of situations is instrumental to safe navigation. Based on a breakdown of COLREGS rules, this article presents a framework to represent manoeuvring behaviours that are expected when all vessels obey the rules. The article shows how nested finite automata can segregate situation assessment from decision making and provide a testable and repeatable algorithm. The suggested method makes it possible to anticipate own ship and other vessels’ manoeuvring in a multi-vessel scenario. The framework is validated using scenarios from a full-mission simulator.

Ocean Engineering / 2022
Go to paper
paper

Parallel Automaton Representation of Marine Crafts’ COLREGs-based Manoeuvering Behaviours

Papageorgiou, Dimitrios; Blanke, Mogens; Lützen, Marie; Bennedsen, Mette; Mogensen, John; Hansen, Søren

With international rules of navigation, the IMO COLREGS, describing the regulatory behaviours of marine vessels relative to each other, correct interpretation of situations is instrumental to the successful navigation at sea. This becomes even more crucial when temporal unattended bridge or fully unmanned navigation is aimed at. Based on a breakdown of COLREG rules, this paper presents a framework for representation of manoeuvering behaviours, that are expected when all vessels obey the rules. Our analysis is based on discrete-event systems theory and the proposed framework consists of sets of finite automata, segregating situation assessment from decision making. A intermediate supervisory layer coordinates the communication of these automata modules. The framework is tested in simulation environment using a realistic scenario.

IFAC-PapersOnLine, Volume 52, Issue 21 / 2019
Go to paper