We investigate piston-mode fluid resonance within the narrow gap formed by two identical fixed barges in a side-by-side configuration, utilizing a two-dimensional fully nonlinear numerical wave tank. The focus is on examining the effects of uniform and shear currents. Under ‘wave+uniform-current’ conditions, a certain current speed is identified, beyond which the gap resonance reduces dramatically and monotonically with the current speed. This reduction is attributed to a stronger increase in damping compared to wave excitation, qualitatively explained by a linearized massless damping lid model. Furthermore, we study the effects of waves propagating on shear currents, maintaining an identical ambient current speed at the gap depth. Complementary to previous studies on this topic, our study reveals that the velocity profile of the studied shear current has an insignificant effect on the resonant gap amplitudes. The ambient current velocity at the gap depth is a more important key parameter to consider when assessing wave-induced gap responses, leading to a non-negligible increase in the resonant gap response. Consequently, disregarding the influence of currents in engineering practices is not a conservative approach.
Stricter regulations imposed on emissions are motivating the scientific community to consider studying alternative fuels to achieve low emission, high efficient dual-fuel (DF) marine engines. In this context, three dimensional computational fluid dynamic (CFD) simulations are performed to study the combustion and emission formation under two-stroke, dual-fuel marine engine-like conditions. The DF engine configuration consists of a pilot diesel fuel and a high-pressure, direct injection (HPDI) of natural gas (NG). The simulation results are validated under both high load (high charge density) and low load (low charge density) operating conditions. Detailed analysis of the flame development and emission formation are performed. The interaction between the pilot diesel jets and the methane flame jets is studied. Based on the results, the further methane jets penetration in the low load case leads to better air–fuel mixing and a higher combustion intensity than that in the high load. Effects of the pilot fuel injection timing on combustion and emission formation and the governing mechanisms are also investigated in detail. Results indicate that the intense combustion of the accumulated methane expands the methane flame towards the piston when the pilot injection timing is retarded. The NO formation is lower in the high load case with higher charge density due to the lower combustion intensity. Also, retarding the pilot injection timing decreases the NO formation.
In the present study, conjugate heat transfer (CHT) calculations are applied in a computational fluid dynamics (CFD) simulation to simultaneously solve the in-cylinder gas phase dynamics and the temperature field within the liner of the engine. The effects of different initial temperatures with linear profiles across the liner are investigated on the wall heat transfer as well as on the sulfuric acid formation and condensation. The temporal and spatial behavior of sulfuric acid condensation on the liner suggests the importance of CHT calculations under large two-stroke marine engine relevant conditions. Comparing the mean value of the heat transfer through the inner and outer sides of the liner, an initial temperature difference of 15 K with a linear profile is an appropriate initial condition to initiate the temperature within the liner. Moreover, the effect of the amount of water vapor in the air on the sulfuric acid formation and condensation is studied. The current results show that the sulfuric acid vapor formation is more sensitive to the variation of the water vapor amount than the sulfuric acid condensation.
A numerical study on effects of the injection direction of the pilot diesel fuel on combustion and emissions under two-stroke dual-fuel marine engine-like conditions is presented in this paper. It is found that the injection direction of the pilot fuel has significant effects on the methane start of combustion as well as flame propagation direction which leads to different heat transfer trends to combustion chamber walls and flame- wall interaction. Furthermore, the injection direction of the pilot fuel changes the methane combustion intensity which leads to different trends for emission formation.